Emergence in Cognitive Multi-Agent Systems

Andrei Olaru, Adina Magda Florea University 'Politehnica' of Bucharest

28.05.2009

Introduction

- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence

Example

- Results
- Conclusion

References

Andrei Olaru, Adina Magda Florea MASTS 2009 Bucharest, 28.05.2009

overview

Introduction

- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example
- Results
- Conclusion

 $\label{eq:Emergence} \mbox{Emergence} - \mbox{essential issue in the engineering of multi-agent} systems.$

- \cdot lower (micro) level simple entities that interact.
- \cdot higher (macro) level complex behaviour of the system as a whole.

 \cdot Most studies of emergence use reactive agent systems.

 \cdot Cognitive systems are more capable.

What emergents could be obtained if agents were cognitive?

Andrei Olaru, Adina Magda Florea

Bucharest, 28.05.2009

Emergence inCognitive Multi-AgentSystems

Emergence is:

Introduction

 \cdot the concept of some new phenomenon arising in a system that wasn't in the system's specification to start with. $$$ \ensuremath{[Standish, 2001]}$$

Definitions of Emergence

 coherent emergents at the macro-level that dynamically arise from the interactions between the parts at the micro-level. Such emergents are novel with respect to the individual parts of the system.

Cognitive Emergence

Example

Results

Conclusion

ferences

Computer Science

& Engineering

 \cdot in the context of an interacting set of agents whose dynamics are expressed in a vocabulary *D*, a global phenomenon – static or dynamic, but nevertheless invariant – that is observed by the agents or by an external observer and can only be interpreted in a vocabulary *D'* that is different from *D*. [Beurier et al., 2002]

Important: emergence allows obtaining a function / behaviour of higher level from the interaction of lower level entities.

Andrei Olaru, Adina Magda Florea

Bucharest, 28.05.2009

· Simple behaviour:

Introduction

Definitions

Emergence in Reactive Agent Systems

Cognitive Agents

- Cognitive Emergence
- Example
- Results
- Conclusion

References

[Beurier et al., 2002]

[Zambonelli et al., 2004]

Andrei Olaru, Adina Magda Florea

Bucharest, 28.05.2009

[Picard and Toulouse, 2005]

Types	of	emergents:
-------	----	------------

Emergence inCognitive Multi-AgentSystems

& Engineering Department

	mobility	states	other features	emergents
Introduction	fixed		live / die rules	conservation of
		binary		species ;
Definitions				gliders
Emorranaa in Door	tive Area	t Custome		[Gardner, 1970]
■ Emergence in Read	live Ager	it Systems	attraction &	shape formation
Cognitive Agents	mobile		repulsion	[Zambonelli et al., 2004]
		multiple		multi-level
				shapes
Cognitive Emergence				[Beurier et al., 2002]
■ Example			reinforcement	area coverage
			learning	[Bourjot et al., 2003]
			transportation	accumulation of
Results			of resources	resources
- Conclusion				[Randles et al., 2007]
Conclusion				traffic direction
References				[Picard and Toulouse, 2005]
				0
Computer Science	NUTERIN			6/ 14 👸

AL-MAS Group

- Introduction
- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example
- Results
- Conclusion

Cognitive agents feature:

- $\cdot\,$ beliefs / knowledge
- $\cdot\,$ desires $/\,$ goals
- intentions
- plans

information about $\operatorname{{\color{red}{self}}}$

- \cdot what it wants to do
- \cdot what it is able to do
- how it can do it

Components: input ----> Reasoner Planner output ---- Scheduler

Computer Science & Engineering Department

Andrei Olaru, Adina Magda Florea

Bucharest, 28.05.2009

Emergence inCognitive Multi-AgentSystems

Introduction

Expected emergents are based on

- \cdot components of cognitive agents
- · interaction attraction, repulsion, exchange

Cognitive Agents

Emergence in Cognitive Agent Systems

Example

Results

Conclusion

· Cognitive emergence – achieving a high level global goal through the interaction between agents that follow their own, individual, possibly selfish, goals.

Computer Science & Engineering Department

. Andrei Olaru, Adina Magda Florea MASTS 2009 Bucharest, 28.05.2009

- Introduction
- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example application
- Results
- Conclusion

Computer Science & Engineering Department Cognitive multi-agent system for data distribution. System specification:

- \cdot capacity: 4 chunks; data in the system: 6 chunks.
- $\cdot\,$ communication only with the 8 neighbours
- agent objectives
 - ready for incoming data \Rightarrow keep capacity \leq 75%
 - get interesting data (if capacity < 75%)
 - inform other agents of current content

- Introduction
- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example application
- Results
- Conclusion

Computer Science & Engineering Department Cognitive multi-agent system for data distribution. System specification:

- \cdot capacity: 4 chunks; data in the system: 6 chunks.
- $\cdot\,$ communication only with the 8 neighbours
- agent objectives
 - ready for incoming data \Rightarrow keep capacity \leq 75%
 - get interesting data (if capacity < 75%)
 - inform other agents of current content

- Introduction
- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example application
- Results
- Conclusion

Computer Science & Engineering Department Cognitive multi-agent system for data distribution. System specification:

- \cdot capacity: 4 chunks; data in the system: 6 chunks.
- $\cdot\,$ communication only with the 8 neighbours
- agent objectives
 - ready for incoming data \Rightarrow keep capacity \leq 75%
 - get interesting data (if capacity < 75%)
 - inform other agents of current content

Results: data storage, distribution and availability

Output:

Introduction

- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example
- Results
- Conclusion

distribution for 6 chunks of data, after stabilisation:

- Bucharest, 28.05.2009

- Introduction
- Definitions
- Reactive Systems
- \cdot Emergence is a key issue in the study of multi-agent systems.

- Cognitive Agents
 As computing capabilities grow, even for small devices, the cognitive approach becomes a promising direction of
 Cognitive Emergence development.
- Example
- Results
- Conclusion

 \cdot Emergents in cognitive agent system are expected to relate not only to position and state, but to organisation based on beliefs, goals and plans.

- Introduction
- Definitions
- Reactive Systems
- Cognitive Agents
- Cognitive Emergence
- Example
- Results
- Conclusion

Beurier, G., Simonin, O., and Ferber, J. (2002).

Model and simulation of multi-level emergence. Proceedings of IEEE ISSPIT, pages 231-236.

Bouriot, C., Chevrier, V., and Thomas, V. (2003).

A new swarm mechanism based on social spiders colonies: From web weaving to region detection. Web Intelligence and Agent Systems, 1(1):47-64.

De Wolf, T. and Holvoet, T. (2005).

Emergence versus self-organisation: Different concepts but promising when combined. Engineering Self Organising Systems: Methodologies and Applications, 3464:1-15.

Gardner, M. (1970).

Mathematical games: The fantastic combinations of john conway's new solitaire game 'life'. Scientific American, 223(4):120-123.

Picard, G. and Toulouse, F. (2005).

Cooperative agent model instantiation to collective robotics. In Engineering Societies in the Agents World V: 5th International Workshop, ESAW 2004, Toulouse, France, October 20-22, 2004: Revised Selected and Invited Papers, Springer,

Randles, M., Zhu, H., and Taleb-Bendiab, A. (2007).

A formal approach to the engineering of emergence and its recurrence. be presented at EEDAS-ICAC, pages 1-10.

Standish, R. (2001).

On complexity and emergence. Arxiv preprint nlin.AO/0101006, pages 1-6.

Zambonelli, F., Gleizes, M., Mamei, M., and Tolksdorf, R. (2004).

Spray computers: Frontiers of self-organization for pervasive computing. Proceedings of the 13th IEEE Int'l Workshops on Enabling Technologies, WETICE, pages 403-408.

Andrei Olaru, Adina Magda Florea Bucharest, 28.05.2009

