
A Graph-Based Approach to Context Matching
Andrei Olaru

Computer Science Department
University Politehnica of Bucharest

313 Splaiul Independentei
060042 Bucharest, Romania

Email: cs@andreiolaru.ro

Adina Magda Florea
Computer Science Department

University Politehnica of Bucharest
313 Splaiul Independentei

060042 Bucharest, Romania
Email: adina@cs.pub.ro

Abstract—This paper presents the work in progress towards a
simple, flexible and decentralized representation of context and
for the detection of appropriate context-aware action. Continuing
our previous work on decentralized multi-agent systems for the
context-aware exchange of information, we propose a represen-
tation for context inspired from concept maps and conceptual
graphs, and also a formalism for context patterns, that allows the
detection and solution of problems related to the user’s context.

I. INTRODUCTION

Domains like Ubiquitous Computing [1] and Ambient Intel-
ligence [2] have brought context-awareness as a central issue
for research. As the electronic environment that surrounds
people must assist them in more and more of their daily
activities, ambient applications must consider more aspects of
the user’s context in order to improve their performance and
their adequateness to the principles of UbiComp and AmI.

A true AmI system must be non-intrusive, but also proactive.
This is a balance that may be difficult to reach. Appropriate
proactive action must fit the context of the user or the user
will not have an optimal experience with the system [3].
Additionally, in order to be useful, many times proactive action
must result from the anticipation, based on the current context,
of future situations. Context-aware action and anticipation will
also make an AmI system seem ”intelligent”.

There is a large body of research dealing with the subject
of context-awareness. Context has been defined as [4]: ”Any
information that can be used to characterize the situation
of entities (i.e. whether a person, place or object) that are
considered relevant to the interaction between a user and an ap-
plication, including the user and the application themselves”.
Most works deal with context as location, location and time
or other physical conditions, like temperature [5], [6], [7].
Another aspect of context that is considered in some works
is activity [8], [9].

However, most times the situation of the user is defined only
by means of aspects that have been predefined. Situations may
be described by means of certain types of associations [8] or
by means of ontologies and / or rules [6]. However, these
methods are not very flexible and the range of contexts that
can be treated becomes limited with respect to what Ambient
Intelligence should ideally be.

In our approach towards an implementation of Ambient
Intelligence, we are trying to build mechanisms and repre-

sentations that facilitate a more flexible approach to AmI
and context-awareness, while in the same time are easy to
implement and can work on resource-constrained devices.
In previous work a decentralized multi-agent system for the
distribution of information was built, that shared relevant in-
formation between agents, based on some simple measures of
context-awareness [10]. However, context-awareness requires
a more complex and powerful representation of context, while
less capable devices require that this representation be flexible
in size and also easy to process.

This paper deals with describing a simple formalism that
allows agents in a multi-agent system, that have only local
knowledge, to share and process context-related information
and to solve problems by using context matching. We consider
that there is one agent assigned to each user of the system
(we call the system AmIciTy and the agents AmIciTy agents).
Each agent has a representation of the context of its user,
including models on other users. The focus of this paper is
more on defining a manner of representation, and less on the
algorithms used for context matching, the agent’s behaviour
or the protocol used in the communication between agents.

Context matching is based on representing information
about the context of a user as a conceptual graph [11] and
on the existence of context patterns, or, in short, patterns.
Patterns can describe (in more or less detail) situations that the
user has been in, they can describe common sense knowledge,
or just associations between different pieces of information
that are observed to appear frequently in the user’s history.
They resemble the notion of pattern in knowledge discovery
in databases. In fact, patterns may be extracted by using data
mining techniques, but this is not the focus of this paper.

Two matching context graphs (for two different users) mean
a shared context, which is an occasion for further sharing of
information between the users’ agents. A pattern that matches
the user’s context means the user has been in the situation
before (or it is a well-known, commonsense, situation) and
this can allow the agent to anticipate possible problems, as
well as to find solutions to problems already detected.

The next section presents related work in the field of
context-awareness. The proposed context representation, as
well as a scenario and examples of context-aware behaviour
form the content of Section III. The last two sections give an
insight on future work and draw the conclusions.

II. RELATED WORK

In previous work in the field of context-awareness there
are usually two points of focus: one is the architecture for
capturing context information; the other is the modeling of
context information and how to reason about it.

Ever since the first works on context-awareness for perva-
sive computing [12], certain infrastructures for the processing
of context information have been proposed [13], [14], [15],
[8], [5], [16]. There are several layers that are usually pro-
posed, going from sensors to the application: sensors capture
information from the environment, there is a layer for the
preprocessing of that information, the layer for its storage and
management, and the layer of the application that uses the
context information [5]. This type of infrastructures is useful
when the context information comes from the environment and
refers to environmental conditions like location, temperature,
light or weather. However, physical context is only one aspect
of context [17]. Moreover, these infrastructures are usually
centralized, using context servers that are queried to obtain rel-
evant or useful context information [12], [15]. In our approach
[18], we attempt to build an agent-based infrastructure that is
decentralized, in which each agent has knowledge about the
context of its user, and the main aspect of context-awareness
is based on associations between different pieces of context
information.

Modeling of context information uses representations that
range from tuples to logical, case-based and ontological
representations [6], [19]. These are used to determine the
situation that the user is in. Henricksen et al use several
types of associations as well as rule-based reasoning to take
context-aware decisions [8], [20]. However, these approaches
are not flexible throughout the evolution of the system – the
ontologies and rules are hard to modify on the go and in a
dynamical manner. While ontologies make an excellent tool
of representing concepts, context is many times just a set of
associations that changes incessantly, so it is very hard to
dynamically maintain an ontology that describes the user’s
context by means of a concept. In this paper we propose a
more simple, but flexible and easy-to-adapt dynamical rep-
resentation of context information, based on concept maps
and conceptual graphs. While our representations lacks the
expressive power of ontologies in terms of restrictions, a
graph-based representations is very flexible and extensible, so
support for restriction may be added as future work.

Our approach to context representation is rooted in existing
knowledge representation methods like semantic networks,
concept maps [21] and conceptual graphs [11]. These struc-
tures can be used to describe situations (and context) in a
more flexible manner and using less memory than ontological
representations. While graph matching has been previously
used, for instance for image processing [22], we attempt to
use it for the matching of context graphs, also improving the
graphs by means of special notation elements that allow the
definition of patterns.

There has been a significant body of work in the domain of

(a)

(b)

Fig. 1. The knowledge of Alice’s and Bob’s agents, respectively: (a) Alice
will go to a concert where a rock band is playing and which is located at
the stadium, and then to go out with friends; (b) Bob will be going at the
same concert, and has also booked a taxi to get there. Part of the relations
and concepts that appear in the graphs may come from ontologies.

Fig. 2. A pattern that says that if the user attends an activity that has a
location, then the location of the activity should be reached in some way.

ontology alignment, which is vital for a viable implementation
of Ambient Intelligence systems [23]. However, this is not the
subject of this paper. We assume that all agents in the system
work with terms from the same ontology (where it is the case),
or that ontologies have already been aligned.

Software agents and multi-agent systems have been used
many times in the implementation of AmI environments in
the past [15], [24], [25], however context-awareness in these
systems is limited to location-related associations and simple
forms of representation.

III. CONTEXT MATCHING

The main idea of this paper is to propose a graph represen-
tation for contexts, designed in order to facilitate the detection
of compatible contexts.

Scenario. Alice will go to a rock concert in the evening of
the current day. The concert is located at a stadium outside the
city, therefore she should find some means of transportation to
get there, but she hasn’t yet given thought about that. Bob, her
roommate, will go to the same concert but he has not talked to
Alice about that yet. However, he has already booked a taxi to
get to the concert. This is a typical situation for our approach
[18]: insufficient communication between people leads to a
lack of otherwise relevant information that could be easily
obtained by means of an AmI system.

Alice and Bob are both users of the AmIciTy Ambient

Intelligence system. What we want is that the system (1)
detects the need for a means of transportation for Alice, (2)
based on information on Bob’s agenda, suggest that a taxi may
be an appropriate solution for Alice as well, and (3) based on
the existing shared context, propose to Alice that she uses the
same taxi that Bob has already booked.

Each user of AmIciTy has an associated agent. Figure 1
shows the concept graph for the knowledge of the two agents
(agent A for Alice and agent B or Bob) that is relevant to
the scenario. Formally, the knowledge of each agent can be
represented as a graph:

G = (V,E)
V = {vi}, E = {ek}, ek = (vi, vj , value)
where vi, vj ∈ V, i, j = 1, n, k = 1,m
The values of vertices and edges can be either strings

or, better, URI identifiers that designate concepts, relations,
people, etc. The value of an edge may be null.

The graph that an agent has contains the knowledge that
the agent has about the user and about the user’s context. The
graph represents the context of the user, in the measure in
which the agent has perceived it (or been informed of by the
user or by another agent).

First, we want the system to detect the fact that it is
necessary to know how Alice will be getting at the concert.
This can be done by means of the following pattern: if the
user intends to attend something that is an activity, and that
has a location (it’s not, for instance, making a phone call),
then there should also be a means for the user to reach that
location. The pattern is represented in Figure 2.

A pattern is also a graph, but there are several additional
features that makes it match a wider range of situations. The
graph for a pattern s is defined as:
GP

s = (V P
s , EP

s)
V P
s = {vi}, vi = string | URI | ?, i = 1, n

EP
s = {ek}, ek = (vi, vj , E RegExp), vi, vj ∈ V P

s , k =
1,m
where E RegExp is a regular expression formed of strings
or URIs.

A pattern represents a set of associations that has been
observed to occur many times and that is likely to occur
again. Patterns may come from past perceptions of the agent
on the user’s context or be extracted by means of data mining
techniques from the user’s history of contexts. Commonsense
patterns may come from public databases, and patterns may
also be exchanged between agents. However, the creation or
extraction of patterns is not the subject of this paper.

The agent has a set of patterns that it matches against the
current context (graph G). We will mark with the P superscript
the graphs or vertex / edge sets that contain special pattern
features (like ? nodes, for instance).

A pattern GP
s matches a subgraph G′ of G, with G′ =

(V ′, E′) and GP
s = (V P

s , EP
s), iff an injective function f :

V P
s → V ′ exists, so that
(1) ∀vPi ∈ V P

s , vPi =? or vPi = f(vPi) (same value)
and
(2) ∀eP ∈ EP

s , eP = (vPi , v
P
j , value) we have:

Fig. 3. The knowledge base of agent A, completed with the information
on Bob’s agenda. Also the problem and its unsolved part are circled with
a continuous and a dashed line respectively. Although the unsolved part is
displayed together with the rest of the context graph, it is not a concrete or
known fact so it would not be used in pattern-matching.

Fig. 4. A second pattern, specifying that two people can use the same taxi
to get to the same location if the person who has not booked the taxi has
permission from the other to ride the same taxi.

if value is a string or an URI, then the edge
(f(vPi), f(v

P
j), value) ∈ E′

if value is a regular expression, then it matches the values
value0, value1, ..., valuep of a series of edges e0, e1, ..., ep ∈
E′, where

e0 = (f(vPi), va0
, value0),

ek = (vak−1
, vak

, value1), k = 1, p− 1
ep = (vap−1 , f(v

P
j), valuep),

val
∈ V ′.

In other words, every non-? vertex from the pattern must
match a different vertex from G′; every non-RegExp edge from
the pattern must match an edge from G′; and every regular
expression edge from the pattern must match a series (that
can be void, if the expression allows it) of edges from G′.
Subgraph G′ should be minimal. A graph (or subgraph) G′ is
minimal with respect to a matching pattern GP

s iff there is no
edge in G′ that is not the match (or part of the match) of an
edge in GP

s .
A pattern GP

s k-matches a subgraph G′ of G, if condition
(2) above is fulfilled for m− k edges in EP

s , k ∈ [1,m− 1],
m = ||EP

s || and G′ remains connected and minimal. The
relationship of k-matching should be interpreted as match-
ing except for k edges. Non-matching vertexes imply non-
matching edges. We consider the number of edges as relevant
(as opposed to number of vertices, for instance), because
context is a set of associations, so it is the edges that matter.

For the example in Figure 1 (a), the pattern in Figure 2
2-matches the knowledge about Alice that her agent has, G′

pattern GP
s k −matches G →

if k > 0
put problem in the list

if there is a problem and this can be a solution
is the solution is certain / complete

let user know
user confirms solution

increase confidence in pattern
otherwise

decrease confidence in pattern
otherwise

link possible solution to problem

Fig. 5. Pseudo-code of the agent’s behaviour related to context matching.

containing the information that the user (Alice) will attend a
concert (which is an activity) which is located at the stadium.
The missing edges are the go by edge and the to edge,
and there is also a vertex that is missing – the means of
transportation. Because the pattern fits in a percentage of 66%,
it means that Alice is in the situation described by the pattern,
but something is missing, so the agent should ask Alice about
that piece of information or to try to find it itself (see also
Figure 5). This is defined as a problem.

A Problem is a graph GP that contains features that are
specific for patterns (like ? nodes for instance) and that is a
partial instantiation of a pattern GP

s , according to the current
context. A problem GP is the union between the subgraph G′

(of the context graph G) that k-matches pattern GP
s and the

part of GP
s that is not matched by G′. The latter is the unsolved

part of the problem. A problem also remains associated with
the pattern that generated it. Therefore, formally, if a pattern
GP

s = (V P
s , EP

s) k-matches the subgraph G′ = (V ′, E′) of
G, we can define a problem p as a tuple (GP

s , G
P
p), where

GP
p is the problem’s graph:
GP

p = G′ ∪GP
x

GP
x = (V P

x , EP
x)

V P
x = {v ∈ V P

s , v /∈ dom(f)}
EP

x = {e ∈ EP
s for which condition (2) is not

fulfilled}
Note that GP

x (the unsolved part of the problem) is a
subgraph of GP

s . Also note that the unsolved part may contain
edges whose vertices are not both in the unsolved part. The
problem from our example is circled in Figure 3 with a
continuous line, and its unsolved part is circled with a dashed
line.

The agents in AmIciTy are not single agents. They are
part of a multi-agent system. Agents A and B communicate
frequently due to the fact that Alice and Bob live in the same
place and exchange a lot of data. At some point in this commu-
nication, they exchange data about Alice’s and Bob’s agendas,
which is normal for two people that share an apartment. Agent
B will send the subgraph agenda→ Concert and A will send
agenda→ Concert/→ Go Out (agent A will only send the
GoOut activity if Alice has not designated it as private).

Agent A receives the subgraph agenda → Concert and

matches it against Alice’s context, detecting the compatibility
(a full match). So it responds by building upon this common
context: it sends a larger subgraph, containing the band playing
at the concert, as well as the location of the concert. Agent B
does the same operations as A (they share the same context
regarding the concert, so each one’s context matches the other
one’s), just that it also sends to A the associations Concert−
go by → Taxi− to→ Stadium.

The communication between agents as described above is
done based on shared context. Starting from sharing their
agendas, at each step agents detect matches between the two
contexts and respond with a subgraph that is larger with one
level (breadth-first).

All the data that agent A has about other agents (here, agent
B) is stored in the agent’s knowledge base as its model of the
other users. The model for the other users is not necessarily
separate though: if the same concept appears in both models
(provided the concept ha the same URI, or the agent is able
to detect by means of common sense knowledge that it is the
same concept), both subgraphs will contain the corresponding
node. Figure 3 shows the knowledge of agent A regarding
users Alice and Bob. The model for Bob’s agenda contains
the same Concert node that is contained in the graph for
Alice. When matching patterns from its pattern set, A detects
that the pattern mentioned above fully matches the model for
Bob. Agent A also has a problem that is linked to this pattern.
Since Bob’s context fully matches the pattern, it means it may
be a solution to Alice’s problem: Alice may also use a taxi
to reach the concert. But that would mean booking a different
taxi (use a different instance of the concept).

Another pattern may be used in this context: agent A may
know that two people may share the same taxi to get to the
same destination, if one has permission from the person that
booked the taxi (we have somewhat simplified the problem
and we do not mention that the two people must leave from
the same location and need to reach the destination at the
same time). This pattern is shown in Figure 4. Matching this
pattern against the knowledge of agent A about Alice’s context
in Figure 3 (remember that unsolved parts are not matched),
a 2-match is obtained (missing relations are has permission
and Alice’s go by). Not only that, but adding those relation
would solve the problem that Alice has. Therefore, the agent
can suggest to Alice to ask permission from Bob to use the
same taxi.

In this particular case, with the given knowledge and pat-
terns, there is only one solution to the problem that arose. But
in a more realistic case, where context is more complex and
there are more patterns, more solutions to the same problem
may be found. In case they fit equally well in the current
context, then the agent must prompt the user with all of them
and the user must be given the choice.

It can be argued that context-matching is a very difficult
problem in the case of large graphs and complex situations.
However, resource-constrained devices will work only with
smaller pieces of context information (i.e. smaller graphs), that
are relevant to their function. Second, algorithms inspired from

data-mining allow for incremental matching, starting from
common nodes and growing the matching sub-graph (similar
to the algorithm for matching Rule Schemas [26]).

Another problem that may appear in realistic situations
(as opposed to our simple example) is the abundance of
simultaneous matching context patterns, possibly describing
contradictory situations. This is where more refined measures
must be found that will allow calculating the relevance of each
match. This too will be part of our future work.

IV. FUTURE WORK

The work presented in this paper is in progress. We are in
the process of identifying an efficient matching algorithm, as
well as deploying the described formalism into a previously
implemented multi-agent system.

Besides detecting compatible contexts, there is a very inter-
esting potential in detecting incompatible contexts, or contexts
that the user should not be in. Also, uncertainty has yet to
be included in our work. Both these problems have been
researched in the domain of conceptual graphs and graph
matching.

One last question that must be further researched is if a
subgraph k-matching a pattern should really be connected.
Moreover, should a pattern be necessarily connected, and how
could unconnected patterns and matches be interpreted.

V. CONCLUSION

So far, work in context-awareness for pervasive environ-
ments has been based predominantly on location-awareness
and physical conditions. The use of ontologies or rules does
not bring much dynamical flexibility and they are not easy to
modify automatically, at runtime.

This paper presents the work in progress towards the devel-
opment of a more simple – suitable for resource-constrained
devices – and more flexible manner of representing context
and context patterns, that allows the agents to take decisions
without the need for a centralized structure, by means of their
knowledge, their history and local communication alone.

ACKNOWLEDGMENT

This work was supported by CNCSIS - UEFISCSU, project
number PNII - IDEI 1315/2008 and Grant POSDRU 5159.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 272, no. 3, pp. 78–89, 1995.

[2] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J. Burgelman,
“Scenarios for ambient intelligence in 2010,” Office for Official Publi-
cations of the European Communities, Tech. Rep., February 2001.

[3] G. Riva, F. Vatalaro, F. Davide, and M. Alcañiz, Eds., Ambient Intelli-
gence. IOS Press Amsterdam, 2005.

[4] A. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, pp. 4–7, 2001.

[5] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, 2007.

[6] M. Perttunen, J. Riekki, and O. Lassila, “Context representation and
reasoning in pervasive computing: a review,” International Journal of
Multimedia and Ubiquitous Engineering, vol. 4, no. 4, pp. 1–28, October
2009.

[7] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,
and H. Duman, “Creating an ambient-intelligence environment using
embedded agents,” IEEE Intelligent Systems, pp. 12–20, 2004.

[8] K. Henricksen and J. Indulska, “Developing context-aware pervasive
computing applications: Models and approach,” Pervasive and Mobile
Computing, vol. 2, no. 1, pp. 37–64, 2006.

[9] M. Kaenampornpan and E. ONeill, “An integrated context model: Bring-
ing activity to context,” in Proceedings of the Workshop on Advanced
Context Modelling, Reasoning and Management, 2004, pp. 7–10.

[10] A. Olaru, C. Gratie, and A. M. Florea, “Context-aware emergent
behaviour in a MAS for information exchange,” Scalable Computing:
Practice and Experience - Scientific International Journal for Parallel
and Distributed Computing, vol. 11, no. 1, pp. 33–42, March 2010, iSSN
1895-1767.

[11] J. Sowa, Knowledge representation: logical, philosophical, and compu-
tational foundations. MIT Press, 2000.

[12] A. Dey, G. Abowd, and D. Salber, “A context-based infrastructure for
smart environments,” Proceedings of the 1st International Workshop on
Managing Interactions in Smart Environments (MANSE’99), pp. 114–
128, 1999.

[13] J. Hong and J. Landay, “An infrastructure approach to context-aware
computing,” Human-Computer Interaction, vol. 16, no. 2, pp. 287–303,
2001.

[14] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster,
“The anatomy of a context-aware application,” Wireless Networks,
vol. 8, no. 2, pp. 187–197, 2002. [Online]. Available:
http://www.springerlink.com/content/l42022u2k266658p/

[15] T. C. Lech and L. W. M. Wienhofen, “AmbieAgents: a scalable infras-
tructure for mobile and context-aware information services,” Proceed-
ings of the 4th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The
Netherlands, pp. 625–631, 2005.

[16] L. Feng, P. M. G. Apers, and W. Jonker, “Towards context-aware data
management for ambient intelligence,” in Proceedings of DEXA 2004,
15th International Conference on Database and Expert Systems Appli-
cations, Zaragoza, Spain, August 30 - September 3, ser. Lecture Notes in
Computer Science, F. Galindo, M. Takizawa, and R. Traunmüller, Eds.,
vol. 3180. Springer, 2004, pp. 422–431.

[17] G. Chen and D. Kotz, “A survey of context-aware mobile computing
research,” Dartmouth College, Technical Report TR2000-381, November
2000.

[18] A. Olaru, A. E. F. Seghrouchni, and A. M. Florea, “Ambient intelligence:
From scenario analysis towards a bottom-up design,” in Proceedings of
IDC’2010, the 4th International Symposium on Intelligent Distributed
Computing, 2010, accepted for publication.

[19] T. Strang and C. Linnhoff-Popien, “A context modeling survey,”
Workshop on Advanced Context Modelling, Reasoning and Management
as part of UbiComp, pp. 1–8, 2004. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.2060

[20] C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ran-
ganathan, and D. Riboni, “A survey of context modelling and reasoning
techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–
180, 2010.

[21] J. D. Novak and A. J. Cañas, “The origins of the concept mapping
tool and the continuing evolution of the tool,” Information Visualization,
vol. 5, no. 3, pp. 175–184, 2006.

[22] E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant, and C. Boeres, “In-
exact graph matching by means of estimation of distribution algorithms,”
Pattern Recognition, vol. 35, no. 12, pp. 2867–2880, 2002.

[23] J. Viterbo, L. Mazuel, Y. Charif, M. Endler, N. Sabouret, K. Breitman,
A. El Fallah Seghrouchni, and J. Briot, “Ambient intelligence: Manage-
ment of distributed and heterogeneous context knowledge,” CRC Studies
in Informatics Series. Chapman & Hall, pp. 1–44, 2008.

[24] G. Cabri, L. Ferrari, L. Leonardi, and F. Zambonelli, “The LAICA
project: Supporting ambient intelligence via agents and ad-hoc middle-
ware,” Proceedings of WETICE 2005, 14th IEEE International Work-
shops on Enabling Technologies, 13-15 June 2005, Linköping, Sweden,
pp. 39–46, 2005.

[25] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady, “Agent
factory micro edition: A framework for ambient applications,” in Pro-
ceedings of ICCS 2006, 6th International Conference on Computational
Science, Reading, UK, May 28-31, ser. Lecture Notes in Computer
Science, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, Eds., vol. 3993. Springer, 2006, pp. 727–734.

[26] A. Olaru, C. Marinica, and F. Guillet, “Local mining of association rules
with rule schemas,” in Proceedings of CIDM 2009, the IEEE Symposium
on Computational Intelligence and Data Mining, March 30 - April 2,
Nashville, TN, USA, ser. IEEE Symposium Series on Computational
Intelligence, 2009, pp. 118–124.

