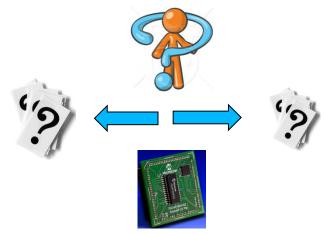
Graph Matching for Context Recognition

Adrian Dobrescu and Andrei Olaru

Adrian Dobrescu and Andrei Olaru AgTAml 2013 – 29.05.2013

Graph Matching for Context Recognition


Outline

- Introduction
- Context Matching for Ambient Intelligence
- Related work
- Context Graphs and Patterns
- Adapting graph matching algorithms
- Integrating Regular Expressions
- Experiments and Results
- Conclusions

Introduction

• Ambient Intelligence (AmI) – a pervasive electronic environment to help people in their daily tasks

• A simple scenario: *Emily has to go to the store. Her personal agent detects that she is near the door and she forgot to take the key and the wallet before leaving.*

Context Matching for Aml

- Context any information that characterize the situation of entities, relevant to the interaction of the users with an application. [Dey, 2001]
- Agents are able to produce context information and to exchage context information between them.
- Question: how to work with context information in a domain-independent manner?
 - Represent context as a graph
 - Represent situations as graph patterns recognize situation, infere information, choose pro-active action
- Problem: matching patterns against the current context

Related Work

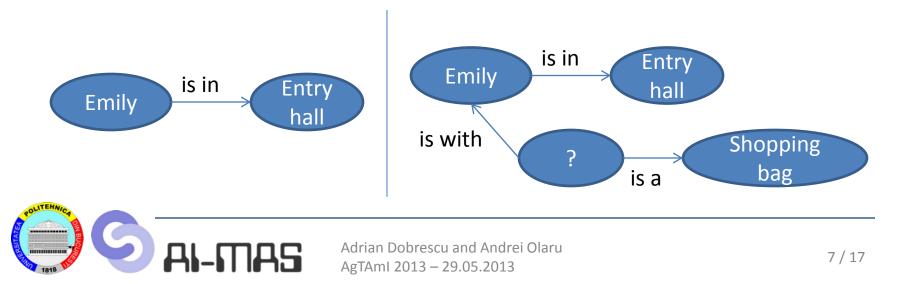
Context-Awareness in Ambient Intelligence

- AmI applications usually focused on specific environments
 - Smart homes, aspects of AAL, museum assistance
- Infrastructures for the processing of context information (Hong, Harter, Feng) favor a single direction of information transfer
- Context representation
 - models varying from tuples to logical representations
 - ontologies
 - Henricksen rule-based reasoning using associations

Related Work

Graph Matching Algorithms

- Graph matching: NP-complete problem
 - Gaining interest at the end of 70s, now interesting again thanks to increased processing power
 - Used in image processing and pattern recognition
 - Exact and inexact graph matching algorithms
- Graphs are a representation that is flexible and adequate for dynamic changes of context
 - Graphs are used in semantic networks, concept maps, conceptual graphs



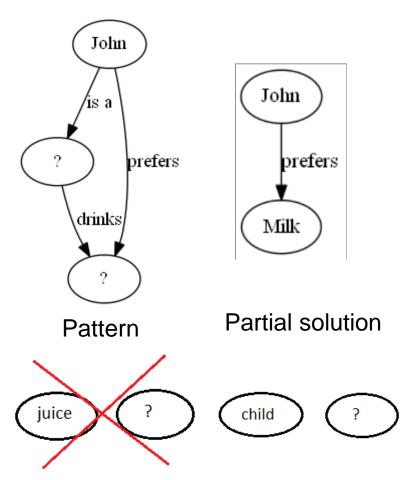
Context Graphs and Patterns

• Each agent has a context graph

 $CG_A = (V, E), V \in Concepts, E = \{(from, to, value), value \in Relations\}$

- Concepts and Relations are strings and URIs
- Patterns = { (G_s^P) | s \in PatternNames, with G_s^P a graph pattern}
 - Can have question marks instead of nodes
 - Edges can be labeled regular expresions

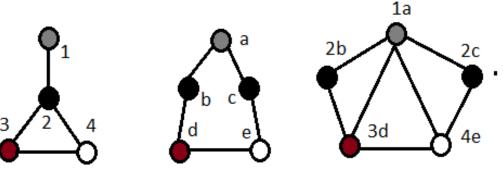
General comments


- Algorithms that we have studied:
 - McGregor, Larrosa, Akkoyunlu, Bron-Kerbosch, Balas-Yu, Koch, Durand-Pasari
- Nodes labeled with "?" can match any other label
- NP-hard problem
- Difficulties: undirected graphs, exact matchings, numerical graphs
- Algorithms: branch and bound, maximal clique finding, constraint satisfaction

The McGregor algorithm [McGregor, 1982]

- Algorithm:
 - initial state void
 - (v1, v2) or (v1, ?)
 - V1 has same label as v2
 - Test of possible extension
 - Maximal solution is saved
- Features:
 - Easy to implement
 - Provides partial solutions
 - Large execution time

The Larrosa algorithm [Larrosa & Valiente, 2002]


- The fastest algorithm in our research
- It is only finding exact matches

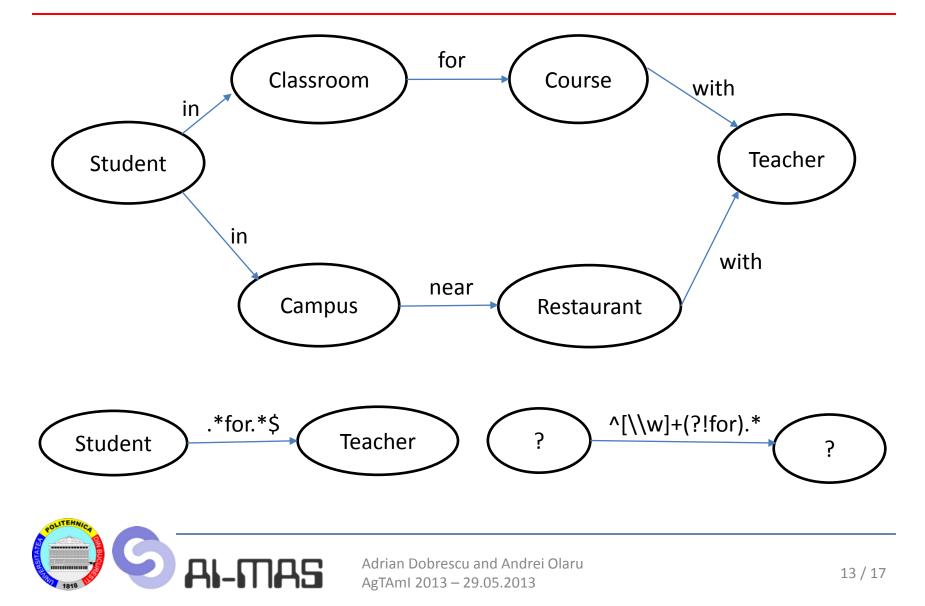
 It cannot solve the context-matching problem
- Constraint satisfaction problem, looking for connectivity with all the neighbours
- The values inside the domains are efficiently erased.
- Larrosa < full prediction < partial prediction

The Bron-Kerbosch algorithm [Bron & Kerbosch, 1973]

Modular product -> associations graph

- Unknown nodes are expanded into all possible solutions
- Convert original graph to an unordered graph
- Finding the maximal clique = finding the maximal common subgraph
- Check if the solutions are valid on the original graph

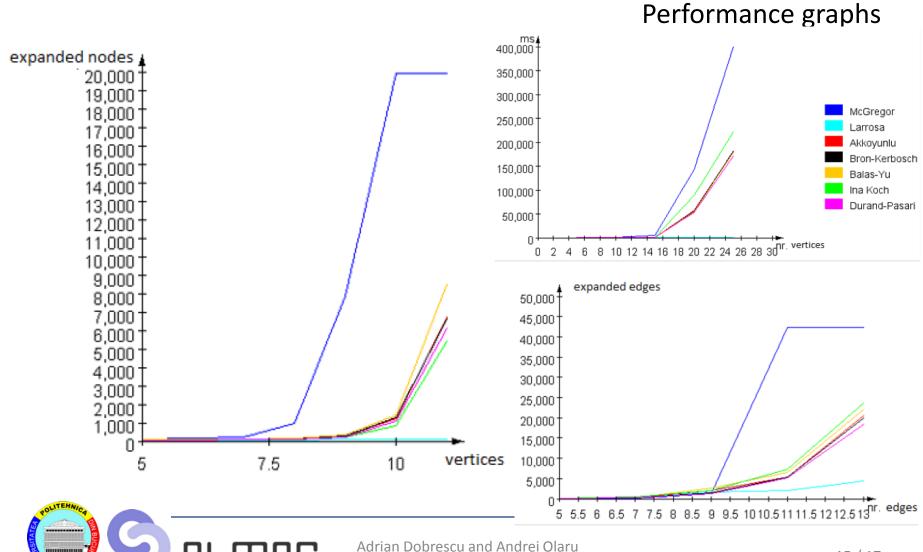
Other clique algorithms


- Akkoyunlu [Akkoyunlu, 1973]
 - An improved version of the Bron-Kerbosch algorithm, considering vertex ordering.
- Durand-Pasari [Durand et al, 1999]
 suplimentary validations in each step
- Koch [Koch, 2001]

Modular product built on edges

- Balas-Yu [Balas & Yu, 1986]
 - Heuristics for state-space prunning

Integrating regular expressions


Experiments and Results

Achievements

- An optimized backtracking procedure on smaller graphs is better than finding heuristics on bigger graphs.
- The McGregor algorithm can be a suitable solution for simple agents with small contexts.
- Clique algorithms are hard to implement and they require many transformations for the context graph problem.

Experiments and Results

AgTAmI 2013 – 29.05.2013

Experiments and Results

Numerical results

• Expanded edges

Edges	McGregor	Larrosa	Akkoyunlu	Bron-Kerbosch	Balas-Yu	Koch	Durand-Pasari
5	42	46	124	120	135	140	119
7	115	391	330	321	372	420	310
9	1250	1699	1995	1464	2542	2115	1330
11	42343	2108	5431	5440	6423	7345	5219
13	1976312	4324	20470	19989	22170	23575	18322

• Execution time

Vertices	McGregor	Larrosa	Akkoyunlu	Bron-Kerbosch	Balas-Yu	Koch	Durand-Pasari
5	14	1	9	7	23	10	9
10	82	11	22	34	42	36	30
15	5021	25	50	56	89	82	51
20	143023	36	56971	56392	54112	88523	52332
25	Х	53	179434	181302	178342	221390	171000

Conclusions and Future Work

Conclusions

- An overview of the research conducted in graph matching
- We have implemented and adapted several graph matching algorithms for the context matching problem
- Matching context graphs can be a good answer to the problems that appears when dealing with contextawarness
- Future work
 - Improving efficiency in real time problems
 - Deployment on real devices with capabilities of interaction between different machines
 - Dealing with uncertain knowledge

Thank you

Any questions?

Adrian Dobrescu and Andrei Olaru AgTAmI 2013 – 29.05.2013