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Abstract—In the software implementation of a general Am-
bient Intelligence (AmI) system, there are two major issues,
on which depend the flexibility and the performance of the
project. One is the implementation paradigm – how the various
entities are organized and how they interact; the other is the
management of context information, and how context-awareness
is integrated as a first-class element in the implementation. This
paper is framed in a research effort to develop an agent-based
platform for AmI applications. While in previous research we
have already argued in favor of using an agent-oriented paradigm
for the implementation, and we have already introduced the
concept of context graphs and context patterns, it is in this
paper that we argue that matching context patters against context
graphs is a valid method for detecting the user’s situation and
acting upon the user’s context. In support of this, we analyze
several algorithms for graph matching, adapted to our problem,
and compare their performance on specific examples of context
matching.

I. INTRODUCTION

Ambient Intelligence – or AmI, for short – is the vision of a
future where people will be surrounded by an electronic envi-
ronment – consisting of a large number of sensors, actuators,
smart appliances and devices – that sense the user’s context
and act in order to improve his or her experience. AmI consists
of devices and services that are personalized for each user and
that collaborate in order to be adaptive and anticipatory, taking
action in a proactive but non-intrusive manner.

So far, a certain number of scenarios have been developed,
that describe how Ambient Intelligence should act in a large,
unified environment [1]–[3]. Implemented applications have
focused on specific environments and situations (e.g. smart
homes, various aspects of AAL, museum assistance) but few
implementations deal with general platforms for AmI, and few
use generic and flexible reasoning in their actions [4], [5].

This research is framed by a larger initiative (AmIciTy
– Ambient Intelligence for the Collaborative Integration of
Tasks) to build an agent-based environment for AmI appli-
cations in which context is a first-class element. At the core
of the platform is the context-aware transfer of information
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between the agents, as well as a generic class of context-
aware actions [6], [7]. This context-aware behavior of agents
relies on the use of context graphs and context patterns –
simple, flexible, yet powerful representations for the user’s
context and for known situations. Matching context patterns
against the user’s context graph, an agent can detect the user’s
situation and act accordingly, by detecting incomplete matches
of context patterns in the context graph and suggesting missing
edges [8]. The communication between agents is based on the
principle that every agent sends the information that it deems
interesting to the agents that share context with it and that may
be interested in that piece of information [9]. “Interesting” here
means that it matches a pattern from the agent’s set of patterns.
In fact, most of the generic, non application-specific activity
of the context-aware agent is based on context matching
(matching context patterns against the agent’s context graph).
It is used to detect if the information from other agents is
relevant to the agent; it is used to detect the user’s situation and
propose possible actions; and it is used to detect information
that may be interesting to neighbor (context-wise) agents.
For implementation we use the agent-based tATAmI platform
(towards Agent Technologies for Ambient Intelligence) [10].

Let us have a short example to show how this works, and see
why context matching is important: Emily is an elderly woman
that lives alone. Since she is old of age, she rarely goes out of
her home, and when she does, it is usually to go shopping at
the nearby store. At the store she needs her shopping bag and
her wallet. She always needs to take her keys when going out.
But she is forgetful and sometimes forgets one of the things,
which is painful for her because she needs to go back. But
since AmIciTy is here to help her, her clothes, shopping bag,
wallet and keys all have RFID tags, and they can be traced by
several detectors in the house. When her personal agent detects
that she is near the door and dressed to go outside, therefore
likely to leave, a pattern is activated that indicates that she
needs to get her keys. Another pattern is activated saying that
she may need her wallet and a bag that qualifies as a shopping
bag. A non-intrusive reminder is activated. Moreover, if she
has already taken, for instance, her wallet, the match with the
second pattern is stronger and the alert should be stronger as
well. A visual representation of these patterns can be seen in
Figure 1.

While the argument about the using context graphs and
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Fig. 1. Example context graph (a) and two context patterns (b, c).

patterns for AmI applications has already been done in our
previous work, we cannot forget that a usable AmI system
needs to have a certain degree of performance, in order to
respond promptly to the user’s needs and act with anticipation
should the situation require it. The question is therefore
how the matching of context patterns against graphs (context
matching) can be done by agents, and if it can be done in
adequate time by the whole range of agents (large and small)
and with satisfactory results. This is the focus of this paper.

The general problem of graph matching, appearing usually
in image recognition [11], has been well researched and
several algorithms for matching graphs have been developed.
However, the majority of them is focused on matching undi-
rected, unlabeled graphs. An additional difficulty is that the
general problem of graph matching is NP-hard.

In this context, the purpose of this paper is to review existing
graph matching algorithms that are adequate for the problem at
hand, to see how the algorithms should be modified in order
to solve the problem, and what algorithms are able to offer
adequate performance considering the constraints of Ambient
Intelligence systems.

The following section presents some related work in the
fields of context-awareness and graph matching. Section III
details the concept of context graphs and patterns, to prepare
the introduction of context matching algorithms in Section IV.
Matching of edges labeled with regular expressions is detailed
in Section V. Experimental results are given in Section VI and
the last section draws the conclusions.

II. RELATED WORK

A. Graphs and Patterns for Context-Awareness

In infrastructures for processing context information there
are usually several layers that are proposed, going from sensors
to the pre-processing of the perceived information, the layer
for its storage and management, and finally to the application
that uses the context information [12]. Infrastructures are also
usually centralized, using context servers that are queried to
obtain relevant or useful context information. In our approach
[6], we attempt to build an agent-based infrastructure that is
decentralized, in which each agent has knowledge about the
context of its user, and the main aspect of context-awareness
is based on associations between different pieces of context
information. This makes the system able to use context-
information that is not only consuming context information,
but also creating context information and disseminating it
through the system.

Modeling of context information uses representations that
range from tuples to logical, case-based and ontological
representations [13]. Henricksen et al use several types of
associations as well as rule-based reasoning to take context-
aware decisions [14]. Using graphs and patterns [8] leads to
more flexibility and a more simple basic mechanism, that is
more adequate to a constantly changing dynamic context.

B. Algorithms for Graph Matching

The idea of matching graphs has begun to gain momentum
at the end of the 70s. In that time, it has been introduced as
a powerful tool for solving pattern recognition (PR) problems
[15]. After this period, the interest for using graphs in PR
problems has lowered, due to the large computational effort
needed to approach most of the algorithms used to determine
similarities between graphs. This is because the graph match-
ing problem is NP-complete.

However, recently the interest in using graphs for pattern
recognition has grown back up [15]. Although the computa-
tional effort has remained significant, optimizations and most
importantly much increased computational power enabled an
approachable solution to matching graphs. This lead to using
graphs in a wider range of domains. Graph matching is a
process that can benefit applications in image (static and
video) analysis, document processing, biometric analysis, and
biomedical applications. Now, these domains include the one
of Ambient Intelligence. Graphs can give a visual repre-
sentation for agent networks, ontologies and other ways of
knowledge representation (e.g. RDF).

We may classify graph matching algorithms in 2 major
categories:
• Exact matching, when the structures must be identical;
• Inexact matching, when a match might be valid even if

the 2 entities are different to a certain extent.
Among the most important algorithms for matching of unla-

beled graphs are tree-search algorithms [16] and algorithms for
the matching of a graph against a library of graphs [17]. Some
algorithms, especially those for inexact matching [18], are
based on powerful mathematical instruments – like expectation
maximization [19], graduated assignment [20], and learning of
assignment coefficients [21].

Ontology or schema alignment (or mapping), on the other
hand, use labeled graphs in which nodes represent the elements
of the schema and edges represent the relations. Most times it
is nodes – i.e. concepts – that must be matched, in order to find
the equivalence between concepts from different vocabularies



or ontologies [22], [23]. While the fact that nodes and edges
are attributed brings this type of matching closer to our
work, the purpose of these algorithms is to match different
vocabularies; our purpose is to match graph patterns against
graphs using the same vocabulary, which in a way is closer to
the purpose of image recognition.

The algorithms that we have focused on in this research
are algorithms that can be adapted to the problem of context
matching: they rely on label comparison and can be adapted to
deal with generic edges and nodes. The algorithms presented
use mainly two techniques:
• incremental matching by exploring the entire state space.

(e.g. McGregor’s algorithm [24]);
• the equivalence between finding a maximal clique and

finding the maximum common subgraph (e.g. Bron-
Kerbosch [25], Durand-Pasari [26], Akkoyunlu [27],
Balas-Yu [28]);

• the equivalence with the maximal clique, but considering
an extended modular product of the edges, not of the
nodes (e.g. the Koch algorithm [29]).

There are other algorithms that perform graph matching
very well but they are more suitable for particular graphs and
those are hard to adapt to the context matching problem. Such
an algorithm is Nauty, which is a special algorithm not related
to more “traditional” graph matching algorithms [30].

We will further discuss graph matching algorithms and their
adaptation to our particular problem in Section IV.

III. USING GRAPH PATTERNS TO DETECT SITUATION

In an Ambient Intelligence system, each agent should have
a representation of the information that is interesting to it, and
also the means of detecting what information is interesting to
it from the stream of information that it receives. Moreover, it
should have a representation of other agents’ interests, in order
to know whom to inform of potentially interesting information,
out of all the agents that share some context with it.

Inside the agent, context information should be represented
in a powerful, yet flexible manner, so that the same represen-
tation can be used on both capable and less capable devices.
To support decentralization, agents should not rely strongly
on centralized components, and must be able to use context
information even in the lack of contact with the centralized
components. An additional requirement is that agents should
be able to easily aggregate information they receive, and
that is interesting to them, with information already in their
knowledge bases.

These are the reasons why we chose a graph-based, RDF-
like representation for context information. Moreover, we
introduced the notion of context patterns to define the interests
of an agent and to help the agent detect the information that
is relevant to its activity.

Each agent A has a Context Graph CGA = (V,E) that
contains the information that is currently relevant to its func-
tion. Considering a global set of Concepts and a global set
of Relations, we have:

CGA = (V,E), where V ⊂ Concepts and
E = {edge(from, to, value) | , from, to ∈ V , value ∈
Relations.

The elements of Concepts and Relations are strings or
URIs; Relations also contains the empty string, for unnamed
relations.

An agent also has a set of context Patterns:
Patterns = {(GP

s ) | s ∈ PatternNames, with GP
s a

graph pattern.
A context pattern s contains a graph GP

s = (V P
s , EP

s ) and
some other properties that are not relevant for the research
question here (see our previous work for details on pattern
relevance and persistence [6]). The graph has some special
properties1, i.e. can have question marks instead of vertex
labels, and can have regular expressions as labels for edges.

A match i between a context pattern GP
s and the context

graph CGA of an agent A is defined2 as [8]:
MA-si(G

′
A, G

P
m, GP

x , f, kf ).
G′A, G

P
m, GP

x are graphs: G′A ⊂ CGA is the subgraph
matched by the pattern, GP

m = (V P
m , EP

m) is the part of the
pattern that matches G′A (or solved part), and GP

x = (V P
x , EP

x )
is the rest of the pattern, which is unmatched. There is no
intersection (common nodes or edges) between GP

m and GP
x .

The pattern GP
s matches the subgraph G′A = (V ′, E′), iff

there exists an injective function f : V P
s → V ′, so that

(1) ∀vPi ∈ V P
s , vPi =? or vPi = f(vPi ) (same value)

and
(2) ∀eP ∈ EP

s , eP = (vPi , v
P
j , value) we have:

if value is a string or an URI, then the edge
(f(vPi ), f(v

P
j ), value) is in E′

if value is a regular expression (having Relations as
alphabet), then it matches the values value0, value1,... ,
valuep of a series of edges e0, e1, ..., ep ∈ E′, where e0 =
(f(vPi ), va0

, value0), ek = (vak−1
, vak

, value1) k = 1, p− 1,
ep = (vap−1

, f(vPj ), valuep), val
∈ V ′.

That is, very non-? vertex from the solved part matches
(same label) a different vertex from G′A, every non-RegExp
edge from the solved part matches (same label for the edge
and vertices) an edge from G′A, and every RegExp edge from
the solved part matches a series of edges from G′A. Subgraph
G′ should be minimal.

A pattern GP
s k-matches (matches except for k edges) a

subgraph G′ of G, if condition (2) above is fulfilled for m−k
edges in EP

s , k ∈ [1,m − 1], m = ||EP
s || and G′ remains

connected and minimal.
For instance, in Figure 1, the first context pattern (Figure 1

(b)) 1-matches the context graph (Figure 1 (a)). The second
pattern (Figure 1 (c)) only 3-matches the context graph, but
with adequate values for characteristic and actionable, it is
usable [8].

1We will mark with ” P ” graphs and elements that contain ? nodes, regular
expressions, and other generic features.

2There may be multiple matches between the same pattern and the same
graph.



IV. ADAPTING ALGORITHMS FOR GRAPH PATTERN
MATCHING

While the problem of context matching does fall into the
larger class of graph matching problems, it has a number
of specific properties. First, most matching problems imply
graphs with unlabeled nodes and edges. Context graphs and
patterns are mostly labeled. Special cases are generic nodes
and edges, which have unspecified labels, or (in the case of
edges), are labeled with a regular expression.

The graph matching algorithms have a high complexity
when the graphs contain multiple nodes with the same label.
But in the context graph, it makes no sense to use an
exponential algorithm when the nodes are unique. The problem
can easily become one with multiple nodes with the same
label, because of the generic nodes in the pattern, labeled with
? (in case they cannot be solved using a constraints satisfaction
algorithm, which can directly deduce which are the labels that
correspond to these nodes).

An appropriate solution would be based on backtracking,
but not all algorithms permit this kind of labeling generic
nodes on the fly. The other variant is expanding every node
vi, and replacing it with a set of nodes vj . . . vk, where
vj . . . vk ∈ CGA and no nodes in GP

s have the same label
as vj . . . vk.

For solving this type of graph, we can use algorithms that
directly compare labels, such as McGregor’s algorithm [24],
or we can use algorithms that are based on the correspondence
between the maximal clique in the associations graph and the
largest common subgraph.

Another approach for this problem would be reducing the
search space in the asymptotic limits given by the biggest
clique in the chordal graph, derived from the initial graph (or
triangulated, where every cycle of length greater than 4 has at
least one chord). The dimension of this clique represents the
inferior asymptote. The superior asymptote is given by the
chromatic number of the graph [31].

A. The McGregor Algorithm

If we consider CG and GP as the context graph and the
context pattern, the McGregor algorithm [24] can be described
as a representation is the state space. A state is defined as
S = (V,E, dim), where V is the set of all vertices and E
the set of all edges in the current common subgraph; dim is
the number of vertices, dim = card(V ). V and E represent
a connected graph which is a subgraph of both CG and GP .
This subgraph can be a possible partial solution for the match.
The solution to the global is, of course, the maximum common
subgraph. The algorithm follows the following steps:
• Step 1: The initial state of the algorithm is empty (con-

tains no vertices or edges, and the dimension is 0).
• Step 2: We choose a pair of vertices (v1, v2) ∈ CG×GP .

A new node v′ is created in V (the current state) with
label(v′) = label(v1) = label(v2). If at least one edge
e′(v′, v′′) exists such that v′′ ∈ V , the solution can be
extended with v′.

• Step 3: If the solution is better than a previous maximum,
then we keep this solution, being the best until the current
step.

• Step 4: A new state is generated, corresponding to the
current one, and a backtracking strategy is employed,
with a depth first search, until we meet a leaf state
(that we cannot expand anymore). In this moment, the
previous state is restored and the new state is generated
by expanding a valid vertex. If the leaf state is not useful
anymore (i.e. maximal), it is discarded.

The complexity of the algorithm, in the worst case, is equal
with the size of the cartesian product of the vertices in both
graphs.

To adapt this algorithm to the context graphs problem, a
few transformations are needed:
• Step 1: The nodes labeled with ? (generic nodes) are

expanded. The number of vertices in the actual problem
will grow, in the worst case, with the product between the
number of unknown vertices and the number of vertices
that are not present in the graph pattern.

• Step 2: The edges that do not have any correspondent
in the contextual graph are removed. Same procedure is
applied for the edges that lose their connectivity as a
result of removing other edges, before. The complexity
of this step is O(E′×E), where E is the set of the edges
in the context graph and E′ are the edges of the extended
graph.

• Step 3: The resulting graph is verified again and only the
maximal connected component is kept.

• Step 4: Apply the McGregor algorithm, presented above.
The advantage of this algorithm is in its simplicity. This

approach is suitable for a whole range of applications, in which
the agents recognize a relative small context (less than 15
independent nodes). For the majority of situations, this size
is fair enough. In the worst case, the algorithm is exploring a
big number of states equal with the cartesian product between
vertices. If the size of the two graphs is growing or there are
a bunch of vertices labeled with ?, the time of execution for
this algorithm is very big and is not feasible for large scale
applications.

B. The Larrosa algorithm

This algorithm was devised by Javier Larrosa and Gabriel
Valiente [32]. It is a backtracking approach with constraint
satisfaction.

A constraint satisfaction problem (CSP) is defined as an
ordered set with N variables. An assignment of values for
the variables is complete if it includes each variable. An
assignment of values is consistent if it satisfies any constraint.
A particular CSP can require an exhaustive generation of all
solutions for this problem, a single solution or finding the best
solution, given some circumstances.

In our case, we are interested in finding a single solution.
This solution is found when all generic nodes have a corre-
spondent in the graph. If we know what kind of labels are



Fig. 2. Example of association graph obtained after applying the modular
product [33].

present in the pattern graph, finding the maximum common
subgraph is trivial because the vertices are unique and can be
determined in polynomial time.

To adapt the Larrosa algorithm to our problem, the follow-
ing difficulties need to be overcome:

The main disadvantage in being applied to context graphs is
that this algorithm can find only a complete isomorphism. To
translate the complete isomorphism between the two graphs
in a partial isomorphism between any two subgraphs, we can
verify if each new node that is added to the partial solution,
generates the best solution to the present.

Another obstacle is that some vertices labeled with ? in the
graph pattern have no correspondent. This detail has a very big
impact on the backtracking mechanics because the validation
of the neighbors cannot be done because they may not be a
part of the solution.

For these reasons, the Larrosa algorithm cannot solve the
context graph problem because we cannot take benefit of its
advantages. Instead, this algorithm is very suitable for two
types of individual subproblems – when all the generic nodes
are included in the maximum common subgraph, and when
the agent is allowed to identify a non-optimal solution, but
that can be found very quickly.

C. The Bron-Kerbrosch Algorithm

The implementation of the Bron-kerbrosch algorithm [25] is
reduced to finding a maximal clique in the associations graph
[34], resulted by computing the modular product between the
context graph and the pattern (see an example association
graph in Figure 2). By applying the modular product, we are
obtaining a graph AG(AV,AE) with the following properties:
AV = {(u, v)|u ∈ CG, v ∈ GP }
AE = {(v1, v2)|v1, v2 ∈ AV, compatiblenodes}
Two nodes v1 = (u, v) and v2 = (u′, v′) are adjacent iff

1) edges (u, u′, label) ∈ E and (v, v′, label) ∈ EP have the
same label, or 2) neither (u, u), nor (v, v) are adjacent.

The modifications needed to adapt this algorithm to our
problem are:
• Step 1: CG and GP are converted into undirected graphs

such that any directed edge will become an undirected
one.

• Step 2: The generic nodes in the pattern graph are
expanded, in the same way as we did in the McGregor
algorithm (Section IV-A. This step can also be done
before Step 1, increasing the probability to remove edges
that have the same label but other orientation.

• Step 3: The association graph is built using the modular
product, as presented above.

• Step 4: The Bron-Kerbrosch algorithm is then applied
in the association graph and the maximal cliques are
identified.

• Step 5: A validation process takes place in which we filter
the maximal cliques identified and we remove the edges
that have the wrong orientation.

This algorithm works on 3 sets, R, P , and X . It finds the
maximal cliques that include all of the vertices in R, some
of the vertices in P, and none of the vertices in X. It can be
upgraded through introduction of a pivot u from the set P . Any
maximal clique must include u or his neighbors. Therefore, for
a node v that is added to the set P , it is necessary only to test
the node u and the nodes that aren’t neighbors of u. Another
approach would be to sort all the nodes in a convenient way.
In the worst case, the complexity for the presented algorithm
is O(3n/3).

D. Other algorithms

There are some other algorithms which are variations of the
ones in the previous sections, that we will present in short in
this section.

The Akkoyunlu algorithm is a contemporary version [27]
of the Bron-Kerbosch algorithm. It uses the optimizations
of pivoting and vertex ordering and is presented in different
terms, but it generates the same recursive search tree.

The Durand-Pasari algorithm [26] is also based on the
equivalence between the maximal common subgraph and the
maximal clique in the association graph. This approach is
different than of Bron-Kerbosch in that it introduces sup-
plementary validations on each step while adding vertices to
the partial solution. Because the main approach is the same
as of Bron-Kerbrosch and consists in finding cliques, the
modifications needed are the same. The advantage is that the
solution works like a stack (insertions and deletions are done
only at one end), therefore we can optimize the space used to
O(card(V )).

The Balas-Yu algorithm [28] relies as well on the equiva-
lence between the maximal common subgraph and the maxi-
mal clique in the associations graph obtained from modular
product. It uses a more complex heuristic for pruning the
subtrees in the recursive search space. The heuristic is based
on two concepts: triangulation of the graph, and coloring. A
graph is considered to be triangulated if any cycle of more
than 4 edges has at least one chord. The coloring procedure
finds an association of colors to vertices in such a way that
no two adjacent vertices have the same color. The algorithm’s
heuristic is based on the property that the size of the maximal
clique is bounded by the largest triangulated subgraph and the



minimum number of colors. This way, we can limit the size
of the clique we are searching for.

The Koch algorithm [29] uses the equivalence between the
maximal clique and the maximum common subgraph, but the
modular product graph is being built by considering the edges
and not the vertices. This approach might be better when the
graphs have many vertices but fewer edges.

V. USING REGULAR EXPRESSIONS

In order to make context patterns more powerful, it is
allowed to have edges in the pattern labeled with regular
expressions. This allows a single edge in the pattern to match
a series of edges in the context graph (see Section III),
edges whose labels match the regular expression (note that the
regular expression has the values of the edges as alphabet).

For instance, in the pattern in Figure 1 (c), instead of the
edge ?

is-a−−→ Shopping bag3, we could make the pattern closer
to reality with specifying that something which can be used
as a shopping bag is a bag that can, among other relations be

used for shopping: ?( is-a?

−−−→ Bag)
is-a?for+−−−−−−→ Shopping.

The algorithm adapted for using regular expressions follows
the backtracking scheme of the Larrosa algorithm for gen-
erating the different ways to label the vertices. This doesn’t
benefit from the Larrosa optimizations because we want to
find a partial match. On top of this procedure, we generate
the paths that can match the regular expression.

However, including this feature in the matching of graphs
greatly increases the difficulty of the problem. Some research
has been done on this domain, from different points of
view [35], [36]. However, since context patterns also contain
generic (unknown) nodes, we cannot directly adapt a proposed
solution. We have devised an algorithm with the following
steps:
• Obtaining all the correct possible matching edges for an

edge that is part of the pattern graph. If the edge has a
simple label (not a regular expression), we should find
all the edges in the context graph that have the same
label and the vertices that represent the source and the
destination also have to match. If one vertex is unknown,
there may be multiple solutions for that edge, with each
distinct label assigned to the vertices.

• If the edge is a regular expression then find all the possi-
ble paths between the source node and the destination
node that match the label and also match the regular
expression. (To optimize this step, all the paths from
one node to another node that are visited in the recursive
search, are being stored and reused in different traversals
of the graph.)

• Choose one edge from the list or a path, instead, if the
edge is labeled with a regular expression.

• Remove the chosen nodes from the available nodes.

3We use the following notation for graphs written in text, using labeled (if
the edge is labeled) right arrows, parentheses and stars (”?”): a graph with
three nodes A, B and C and two edges, from A to B, and from B to C, is
written as A −→ B −→ C; a tree with the root A having two children B and
C is written as A(−→ B) −→ C.

• Continue this process until the solution cannot be ex-
tended anymore and test if the current one is better than
a previous found solution.

The syntax of the regular expressions is flexible and is
depending on the language used and the support for regular
expressions.

VI. EXPERIMENTS AND RESULTS

This section will present a view on the performances of
the algorithms presented in the sections above. Benchmarks
have been performed on all algorithms, trying to balance
the examples between the best case and the worst case of
a particular algorithm. It must be noted that the performance
of the algorithms varies strongly depending on the number of
generic nodes in the graph pattern. For instance, the McGregor
algorithm, for a graph with 12 vertices out of which 2 nodes
labeled with “?”, the time of execution is a trivial one; instead,
for 10 vertices labeled with “?”, the time is increasing with
an exponential growth factor. In this case the algorithm is not
feasible for real applications anymore.

For the graphs below we have chosen a suite of tests such
that it can be illustrate the situations where some algorithms
are weak and other algorithms are strong. The tests have
been designed to be similar with realistic situations. In the
majority of tests, the pattern graph is almost half the size of the
context graph. The values presented in the tables and graphs
are computed as an arithmetic mean of the results of two or
more executions on representative graphs.

The results of the experiments – comparing the evolution of
the implemented algorithms – are presented in Figure 3 (a)-(c)
and Tables I, II and III.

Analysing the results after the execution of the algorithms,
we can observe the following:
• The Larrosa algorithm has the best performances by

far. This algorithm becomes infeasible only at around
40 nodes and performances begin to shrink. The only
disadvantage of the Larrosa algorithm is that it cannot
find partial solutions that are matching the two graphs.

• The McGregor algorithm, in the current approach has
bad performances for a relatively small number of nodes.
Its advantage consists, instead, in having a very easy
implementation that is easy to adapt to our problem.

• Somewhere in between the two extremes is the Bron-
Kerbrosch algorithm, together with its relatives. These
algorithms are suited for our problem and have a less
steep growth in complexity when the size of the graphs
increases.

A few consideration on the complexity of graph matching
(especially when using regular expressions) must be made.
The problem of graph matching is NP-hard. While having
most nodes and edges labeled is an advantage, generic /
unknown nodes and regular expression edges add another layer
of backtracking to matching algorithms.

Nevertheless, in advocating this approach for the implemen-
tation of context-awareness in AmI, we hold that adjusting



(a) (b) (c)
Fig. 3. Comparison of algorithm performance, as a function of a growing size of the graphs: the number of expanded nodes (a); the number of expanded
edges (b); the execution time (c).

Vertices McGregor Larrosa Akkoyunlu Bron-Kerbosch Balas-Yu Koch Durand-Pasari
5 124 10 51 31 72 30 32
6 130 15 47 45 84 38 41
7 223 43 105 91 122 71 84
8 992 56 134 123 183 101 115
9 7872 82 282 273 320 220 235
10 42100 105 1222 1255 1420 830 1100
11 524100 122 6723 6620 8522 5400 6113

TABLE I
COMPARISON OF THE NUMBER OF EXPANDED NODES.

Edges McGregor Larrosa Akkoyunlu Bron-Kerbosch Balas-Yu Koch Durand-Pasari
5 42 46 124 120 135 140 119
7 115 391 330 321 372 420 310
9 1250 1699 1995 1464 2542 2115 1330
11 42343 2108 5431 5440 6423 7345 5219
13 1976312 4324 20470 19989 22170 23575 18322

TABLE II
COMPARISON OF THE NUMBER OF EXPANDED EDGES.

Vertices McGregor Larrosa Akkoyunlu Bron-Kerbosch Balas-Yu Koch Durand-Pasari
5 14 1 9 7 23 10 9
10 82 11 22 34 42 36 30
15 5021 25 50 56 89 82 51
20 143023 36 56971 56392 54112 88523 52332
25 X 53 179434 181302 178342 221390 171000

TABLE III
COMPARISON OF THE EXECUTION TIME OF THE VARIOUS ALGORITHMS.

the size of context patterns and graphs to the computational
power of the machine on which the agent is executing, the
system can offer a good performance. Experiments show that
for small graphs the algorithms offer a good execution time.
Therefore, these sizes are adequate for agents running on small
machines (small devices, sensors, Arduino boards, etc.), which
is realistic, because smaller agents will have functions needing
fewer information. In the whole system, agents will hold only
the information which is relevant to their function.

VII. CONCLUSION

Implementing Ambient Intelligence applications is a com-
plex task, due to the large number of elements that contribute
to a successful AmI environment – hardware, coordination,

power saving, knowledge representation, context-awareness,
etc. In our research, we focus on building a context-aware
multi-agent system that offers a generic layer of context
recognition and context-aware action and information transfer.
This layer has at its center context matching – matching
context patterns against the agent’s context graph.

Context matching is based on matching graphs, therefore
in this paper we have analyzed several graph matching algo-
rithms, detailing modifications that they needed for solving
our specific problem, advantages and disadvantages that they
have, and finally the experimental results of running the
modified algorithm on context graphs of various sizes. We
have identified three algorithms that are most likely candidates
for the context matching problem.



As the problem of matching graphs is significantly difficult
from the computational point of view, the greatest limitation
of this approach lies within the reduced efficiency of matching
algorithms, especially when the number of vertices in the
graph increases beyond a certain (not very large) value.

As future work, our first priority is to optimize the matching
to only match partial matches once, even if the context graph
changes or new patterns are added. This would mean that
matching can be done asynchronously and will be performed
only when truly necessary.

Moreover, further testing needs to be performed to observe
how the algorithms behave when varying the proportion of
generic nodes in the patterns, the size of the pattern with
respect to the size of the graph, and the complexity of regular
expression edges. Further, context matching will be used in
the simulation of realistic scenarios, under the constraints of
devices of various sizes (e.g. Android smartphones).
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