
tATAmI-2 – a Flexible Framework
for Modular Agents1

Andrei Olaru
Department of Computers

University Politehnica of Bucharest
313 Splaiul Independentei

060042 Bucharest, Romania
Email: cs@andreiolaru.ro

Abstract—The paper introduces tATAmI-2, an agent develop-
ment framework that allows the creation of modular agents and
permits a great deal of flexibility with respect to the manner
in which various functionality, such as agent communication, is
implemented. The framework strikes a good balance between
flexibility and ease of use, by offering several pre-implemented
agent components and communication platforms. The architec-
ture of the framework relies on three elements: the ability to
simultaneously start multiple platforms for agent management
and communication; the ability to load agents in a number of
manners; and, in the case of composite agents, the ability to
customize the component set of an agent, including the possibility
to add application-specific components, or to use components
recommended by the platform for certain functionalities (such
as communication).

I. INTRODUCTION

There are currently a reasonably large number of frame-
works that allow developers to design, create, deploy and
monitor multi-agent systems. Their focus varies from research
to industrial applications. They allow deployment of agents
programmed in various languages, from Java to specific AOP
languages such as Jason.

Throughout our work, we have found that existing platforms
lack flexibility and ease in deployment and management. They
either enforce a specific means of communication between
agents, or a specific programming language, or specific re-
quirements for the host system.

This paper introduces the tATAmI-2 framework – towards
Agent Technologies for Ambient Intelligence, 2nd generation.

The main goal of tATAmI-2 is flexibility. It does not enforce
on the agent developer a platform, a means of communication,
a model for the agent, a means of reasoning or a representation
for knowledge (although some basic restrictions exist, such
as messages being translatable to character strings). At the
same time, it offers various pre-existing implementations for
each of these elements, as well as the possibility for the
developers to implement or extend their own. tATAmI-2 offers

1The final publication can be found on IEEE Xplore
Olaru, A., tATAmI-2 – a Flexible Framework for Modular Agents in Dumitra-
che, I., Florea, A. M., Pop, F. and Dumitrascu, Alexandru (eds.), Proceedings
of CSCS 20, the 20th International Conference on Control Systems and
Computer Science, May 27-29, Bucharest, Romania, IEEE Xplore, 2015,
pages 703-710
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7168503

a means to connect various implementations that offer these
functionalities and make them work together as an agent
system.

Another important goal of tATAmI-2 is to offer the agent
developer a framework which is easy to understand and use,
and quick to deploy. Repeatable, one-click deployment is a
central issue.

Although the features offered by tATAmI-2 are one way
or another offered by existing frameworks, we believe that
tATAmI-2 strikes a great balance between the range of features
that it offers and the easiness of using those features.

The architecture of tATAmI-2 relies on three main elements:
the platform, the agent, and the agent component. The platform
is what handles agent communication and possibly other cross-
machine features (such as agent mobility). The agent is a
hub for agent components, which in turn implement agent
functionalities, as independently as possible from other agent
components, and regardless of the concrete implementation of
other components (for instance, regardless of how inter-agent
messaging happens).

This paper describes in detail the mechanisms that have
been implemented in order to achieve this level of flexibility
in the framework, through interfaces that specify a minimal
number of functionalities, and a bootstrap process that loads
all the elements in a deployment in the appropriate order.

After discussing other existing frameworks in the next
section, we give more details on the motivation for creating
tATAmI-2 in Section III. Section IV describes the architecture
and components of the framework. Deployment of tATAmI-2
applications is discussed in Section V. The last section draws
the conclusions and introduces the aspects of future work.

II. RELATED WORK

In the domain of agent development frameworks, we see two
types of frameworks. Some, such as JADE, JIAC, JACK and
Jadex rely on Java agent implementations and offer various
functionalities and APIs for agent management, communi-
cation and security. These are the frameworks most used
for business and industrial applications. Other frameworks,
such as Jason, Agent Factory and JaCaMo, rely on some
agent-oriented programming (AOP) language, usually Jason /

AgentSpeak for the implementation of agents, reasoning, and
planning.

JADE [1] was the base of tATAmI-1 and it was an inspiration
while creating tATAmI-2. It is a powerful and easy to use
agent development and deployment framework that offers
agent management, mobility, and communication for agents
implemented in Java. One of the drives to move tATAmI-2
away from Jade was a desire to increase the performance of
the agent system, to increase its flexibility, and to be able
to implement other means of communication between agents
(such as through WebSockets).

Jadex [2] is a reasoning engine that extends Jade agents
with reasoning capabilities (a BDI model), agent components,
and business-oriented features. However, developing agents
in Jadex is requires combining Java and XML in advanced
specifications that may be difficult to grasp by the agent
developer.

JACK Intelligent Agents [3] is a production-grade frame-
work for building BDI agents, building on the experience of
PRS [4] and dMARS [5]. It is very well suited for building
agent systems quickly and with relative ease, however it does
not feature the flexibility we are trying to offer in choosing
the messaging components, platforms, and concrete agent
implementations.

JIAC [6] is another production-grade framework for devel-
oping complex agent systems, on both workstations (JIAC-
V) and mobile/embedded devices (microJIAC). Its focus on
industrial applications, by offering features for security, man-
agement and scalability, is what differentiates it from tATAmI,
which is focused on lightweight, repeatable testing and exe-
cution of AmI applications.

Jason [7] is based on AgentSpeak and is an AOP language
with its own special syntax to define goals, conditions, and
plans. Jason agents can be run on top of Jade when a
distributed setup is required. Jason is however constraining the
developer into a particular way of programming agents, which
some may find difficult to grasp, especially for developers not
familiar with agent theory.

Agent Factory [8], together with its implementation for
mobile devices – Agent Factory Micro Edition [9], includes
flexibility for implementing agents in various programming
languages, but currently contains development kits only for
Jason-based implementations, therefore the developer must be
familiar with Jason.

JaCaMo [10] is a framework that combines three com-
ponents: the Jason programming language, Moise organiza-
tions features, and the CArtAgO artifact and environment
infrastructure. JaCaMo is probably one of the most suited
frameworks for deploying MAS, however creating a JaCaMo
deployment involves considerable work and requires a great
deal of background theoretical knowledge. Performing even
common agent-related tasks is not easy to do.

Repast Simphony [11] is a great open source and free
environment for agent-based modeling of complex adaptive
systems. It offers a varied range of tools for modeling and
analysis. It’s goal is, however, agent simulation. It does not

support deployment over networks of heterogeneous devices
and platforms, nor is it focused on heterogeneous agent
systems.

III. CONTEXT AND MOTIVATION

The development of tATAmI-2 started with the modulariza-
tion and enhancement of tATAmI-1, a Jade-based framework
for AmI-oriented applications implemented in S-CLAIM [12].
However, the process of modularization involved a great
deal of changes, resulting in a framework which is almost
completely new.

We consider the tATAmI-1 and tATAmI-2 frameworks as
being suitable for AmI applications (such as person detection
and tracking [13]) thanks to the focus on performance and
distribution, agents of variable size and functionality, and focus
on context-awareness.

A. Features in tATAmI-1

After the successful implementation of Ambient Intelligence
scenarios using the CLAIM AOP language and the SyMPA
platform [14], the tATAmI-1 framework was implemented
from the ground up, with new code, to replicate the old
functionality, but to be easier to use, and allow implementation
of agents in the new and improved S-CLAIM language [12].

tATAmI-1 agents relied on a layered architecture, having a
layer for each main functionality of the system: visualization,
web services interface, hierarchical agent mobility, and S-
CLAIM behavior execution. This layer stack consisted of
classes extending the Jade Agent class.

S-CLAIM is a behavior-centric agent programming lan-
guage that focuses on agent-specific primitives, such as for
sending and receiving messages, knowledge management, mo-
bility, and input and output to a visual interface. The language
has a LISP-like syntax. While the language contains some
algorithmic features – such as the if primitive and a loop
over knowledge records – arithmetic operations and complex
algorithmic functionality are implemented in external Java
libraries of pure functions (see Figure 6 for an example of
source code).

One of the drawbacks of tATAmI-1 is the reliance on
Jade [1] for agent management, agent communication, agent
mobility, and even S-CLAIM behavior management. This
poses problems in some contexts involving mobile devices and
also implies some performance issues due to Jade. Another
drawback is that the layers of the agent cannot be easily
removed or replaced, even with recompilation of the source,
as the implementations are strongly interconnected. Basically,
developers of tATAmI-1 applications were constrained by
the framework’s architecture, much like in other frameworks
described in related work.

B. Requirements for tATAmI-2

The requirements for tATAmI-2 were primarily to solve the
drawbacks of tATAmI-1 in order to obtain a maximum of
flexibility and performance. We can split these requirements
in two sets: one consisting of features that already exist in

Figure 1. The various instances existing in an execution of the system: there are several platform loaders, of which one is default; there are several agent
loaders, of which one is default; each platform has a number of containers, which in turn have a number of agents (viewed as agent managers). Agents are
created (loaded) by an appropriate agent loader, and then loaded onto a platform, to which they have a platform link reference.

tATAmI-1, and one consisted of features that did not. The
requirements solved in tATAmI-1 and that must be maintained
in tATAmI-2 are:

• have a framework in which it takes little time and effort to
go from agent design to implementation and deployment;

• have the possibility to implement agents in an AOP
language that is easy to read, understand and learn by
developers who are less familiar with various general-
purpose programming languages;

• provide a means to deploy a MAS at one click even across
multiple machines and platforms, with minimal interven-
tion on machines other than the launching workstation;

• offer interoperability with other platforms and services;
• use agents that are autonomous and mobile in the system;
The additional requirements for tATAmI-2 are:
• work independently from Jade and the Jade library, while

offering all of the features offered by tATAmI-1;
• have the ability to specify for each agent which func-

tionality to include and how it should be implemented,
without recompiling the source code, by means of the
deployment scenario specification (and potentially not
have the code for the component at compile time);

• be able to use various means of communication between
agents, such as TCP/IP, WebSockets1, web services, or
the Jade platform.

This paper presents the architecture of the tATAmI-2 frame-
work, which fulfills the requirements above (except for, at the
present moment, web service interoperation and execution-
time agent mobility).

IV. TATAMI-2 ARCHITECTURE

The tATAmI-2 framework, implemented2 in Java, is built
around 3 main elements: platforms, agents, and agent com-
ponents (see Figure 1). Agent components are normally used

1http://en.wikipedia.org/wiki/WebSocket
2The tATAmI-2 source code is open source, licensed under a GNU LGPLv3

license, and is available at https://github.com/tATAmI-Project/tATAmI-PC/
tree/tATAmI-2/master.

only by Composite Agents. While it is not required that all
agents loaded in the system are composite (made of agent
components), we will only discuss in this paper the composite
type, as they are a central feature of tATAmI-2.

A. System Structure

A platform is an infrastructure that enables various features
for agents, such as communication. One such platform can be
Jade. Another may be underpinned by WebSocket communica-
tion. And so on. More platforms can be started simultaneously
during the same execution. The system manages a platform
through an instance of the PlatformLoader interface. A
platform has a name and has methods to start and stop
the platform, create a container and load an agent. It also
can be queried what implementation it recommends for a
particular component type. For instance, if an agent must
contain a “messaging” component, but does not specify the
exact implementation (via class path), the system loads the
component recommended by, and therefore specific to, the
platform (as in the example in Figure 5).

An agent is characterized by its name. An agent resides
in a container, on a platform. A container must belong to a
platform, and only to one. An agent must reside in a container,
and only in one. Multiple agents may reside in the same
container, and multiple containers may reside on the same
machine. A container is bound to a specific machine, while an
agent may move between containers (and therefore machines),
if the platform supports agent mobility.

Any agent that is loaded on a platform must implement the
AgentManager interface, which has methods for inquiring
the agent’s name, for starting and stopping the agent, and for
passing a link to the platform to the agent, as an implementa-
tion of the marker interface PlatformLink (which does not
specify any methods). Setting the platform link can be done by
the platform, when the agent is loaded, so that the platform-
specific components can access functionality in the platform.

An agent of a particular type (e.g. composite) is loaded by
an implementation of the AgentLoader interface. An agent

Figure 2. An agent component uses the methods in the class AgentComponent, which it extends, to post events and to register handlers for events (by
type). An event dispatcher dequeues events from the event queue of the agent and signals the event to the components, each component calling the handler
registered for that event (if any).

loader is able to pre-load the agent creation data for an agent,
and later, using this creation data, to load the agent and return
an AgentManager instance (see Section IV-D).

A composite agent contains various components that of-
fer specific functionalities. Components have access to other
components and to the platform, identifying them by type
or name. For instance, a visualization component is able to
contact the messaging component of the agent, if any, to send
and receive messages. The messaging component, which is
specific to the platform (e.g. agents load a specific class for
using messaging on Jade, according to the recommendations
of the Jade platform loader), is able to contact the platform
in a specific way so as to actually send a message to another
agent. Components are also able to post agent events, that the
agent disseminates to all other components (see Figure 2).

One execution of the system (also called a simulation) is
overseen by the Simulation Manager, which provides a GUI
that contains means of visualizing the state of the system and
controls that enable the user to start, pause and stop the system
(see Figure 7). The Simulation Manager creates and maintains
references to Simulation Link Agents, one per platform, that
enable it to send and receive control messages to and from the
agents on each platform.

B. Composite Agent and Agent Components

A composite agent contains a list of components, an event
queue, an event processing thread, and the agent state (see
Figure 2). Any component can post an event in the event
queue. When an event is picked from the event queue, it is
broadcast to all components.

A composite agent is in one of the following states:
• pre-loaded – the agent instance has not yet been created,

but all creation information about it has been loaded and
checked by the agent loader; the components have been
created, but not added to the agent;

• initializing – the agent has been created, and components
are being added to it;

• starting – the event processing thread has been started
and a START event has been posted; the components are
starting as a result; by now all components have been

added to the agent and the agent has been loaded on a
platform, therefore the platform link is active;

• running – all components have started and the agent is
processing normally.

• stopping – a STOP event has been posted; no more events
are accepted and the components are stopping;

• stopped – all components have stopped. The agent can
be started again at this point, or it can be instructed to
destroy all components and exit.

Component implementations must extend the AgentCom-
ponent class, which offers to extending classes several func-
tionalities, such as access to scenario component data, ac-
cess to composite agent functionality (agent name, posting
agent events, event handler registration, platform link) and
to functionality of some other, usual, components, such as
the messaging component (sending messages and registering
message handlers) and the visualization component (access to
the agent log).

Components are able to register event handlers for any of
the standard events in the agent lifecycle (agent start and stop,
simulation start and pause, agent movement), or for custom
events the developer knows may happen (such as GUI input).

Any component has both direct access (by requesting a
reference from the parent agent) and indirect access (through
the event mechanism) to any other component in the agent.

Usual agent components are the Parametric Component –
managing agent parameters; the Visualizable Component –
managing the agent’s log, reporting to the Simulation Man-
ager, and handling of control messages (such as starting the
simulation or stopping the agent); the Messaging Component
– sending messages and managing message handlers for the
agent; the Mobility Component – managing the movement
of the agent from one machine to another; the Cognitive
Component – managing the agent’s knowledge base through
standard functions such as adding, removing, and retrieving
pieces of knowledge matching a certain pattern; and the
S-CLAIM Component – executing S-CLAIM behaviors as
specified by the agent definition file (such as the one in Figure
6).

In a way, components, as processes activated by agent

events, are similar to Jade’s behaviors, activated (many times)
by received messages. However, components address a broader
range of functionality, such as different implementations of
agent messaging and mobility. Platforms may be developed
together with special components so that, by means of the
platform link, the component is able to access specific func-
tionalities that other components are unaware, and therefore
independent of.

C. Messaging

An interesting aspect of the internal organization of compos-
ite agents is messaging. While no specific means of sending
messages from one agent to another is enforced, in order to
ensure interoperability of components, there are some internal
standards.

Any message sent between tATAmI-2 agents contains three
elements: a source endpoint, a destination (or target) endpoint,
and the content. All three must be strings of characters. An
endpoint (or path) is formed of two parts: the external path,
designating the agent, and the internal path, designating the
component, functionality, etc. (see Figure 3).

jade:platform-1/AgentA︸ ︷︷ ︸
external path (agent address)

/VISUALIZATION/CONTROL︸ ︷︷ ︸
internal path

Figure 3. Endpoint structure. The format of the external path depends on
the communication platform.

The format of the external path depends exclusively on the
communication platform that is used. Components are able to
register with the messaging component handlers for specific
internal path prefixes (e.g. the VisualizableComponent may
register a handler for all messages with the internal patch
beginning with /VISUALIZATION).

For the developer of an agent component, working with
messages is simple, as the base AgentComponent class
offers the methods registerMessageReceiver(handler,
prefix) and sendMessage(content, sourceEndpoint,

targetEndpoint), as well as methods for facilitating the
construction and deconstruction of agent paths.

For the developer of a communication platform, the han-
dling of messages once they are received is done by the
abstract MessagingComponent class, that any messaging
component implementation must extend. What is left to do
is:

• create a class implementing the PlatformLoader inter-
face, that handles communication between agents;

• implement a platform-specific messaging component
(that extends MessagingComponent), which is able to
convert the platform-specific format of messages into the
source-endpoint/target-endpoint/content format;

• when the agent starts (and is therefore already loaded
on the platform), the messaging component must register
with the platform (via the agent’s platform link reference),
as the message handler for its parent agent;

• when a message must be sent, the messaging component
may use the platform link reference to send the message.

What the platform link actually points to depends on the
platform. Components using this reference must be aware of
this (e.g. be platform specific). In some cases, the reference
may point to the PlatformLoader instance. In other cases,
for instance in the implementation for Jade, the platform
link points to a Jade Agent implementation, that wraps the
AgentManager instance.

D. Platform Bootstrap and Control System
All the information about what platforms, agents and com-

ponents should be created, on how to do that and with what
parameters, is contained in the scenario file. Each execution
is completely specified by one such file, which is in XML
format. The scenario file (see an example in Figure 5) contains
information on:

• general configuration that all platforms can use, such as
IP and port of the local machine, and IP and port of a
remote ’central’ machine.

• names and parameters of the platforms to start; if a
platform is one of the standard pre-implemented plat-
forms, the name suffices to identify the corresponding
PlatformLoader class; otherwise, the class is searched
in the package with the same name as the platform; for
other setups, the exact class path must be specified.

• names and parameters of the agent loaders to use; if the
agent loader is not standard, the exact class path of the
AgentLoader implementation must be specified.

• packages that contain various elements that are necessary
to agents, such as agent definition files, code attachments,
etc.

• names of containers, platforms to create the containers
on, and indications whether the containers are created
locally or will be created remotely.

• names and parameters of agents to be created in each
container.

• ’timeline’ information: moments of time and content of
messages to send, from the Simulation Link Agents, to
specified recipients, at those moments of time.

The lifecycle of the framework is divided among the phases
visible by the user, which are:

• start of execution (Boot) – all necessary classes, as well
as the scenario file, exist on the local machine;

• start of the Simulation Manager GUI – by now, all
elements of the scenario have been checked; agent data
has been preloaded; components have been created, but
not initialized; platforms have been started; Simulation
Link Agents have been started on all successfully started
platforms;

• start of the system on other machines – systems on other
machines connect to the central machine and receive data
for agents to be created locally;

• “Create Agents” button is pressed – on each machine,
agents are created, components are loaded, and initial
communication takes place;

• “Start” button is pressed – all agents receive a message
to initialize simulation;

lo
ad

sc
en

ar
io

lo
ad

pl
at

fo
rm

s
lo

ad
ag

en
t

lo
ad

er
s

pr
e-

lo
ad

ag
en

ts
st

ar
t

pl
at

fo
rm

s
cr

ea
te

co
nt

ai
ne

rs

platform(s) boot

Boot

st
ar

t
Si

m
Li

nk
A

ge
nt

s

Sim
Mgr

lo
ad

ag
en

ts
lo

ad
ag

en
ts

on
to

pl
at

fo
rm

s
st

ar
t

ag
en

ts
en

ro
l a

ge
nt

s
w

ith
Si

m
Li

nk
A

ge
nt

s

create agents

Create Agents

si
gn

al
si

m
ul

at
io

n
st

ar
t

to
al

l
ag

en
ts

st
ar

ts
ev

en
t

tim
el

in
e

start

Start Simulation

. . .

si
gn

al
si

m
ul

at
io

n
st

op
to

al
l

ag
en

ts
ag

en
ts

st
op

co
m

po
ne

nt
s

close
agents

Clear Agents

st
op

Si
m

Li
nk

A
ge

nt
s

st
op

pl
at

fo
rm

s
cl

os
e

G
U

I
sy

st
em

ex
it

platform(s) exit

Exit

Figure 4. Timeline of an execution of tATAmI-2. Marked above the timeline are events and phases as observed by a user. Below the timeline are processes
that take place inside the framework.

1 <s c e n : p l a t f o r m><s c e n : p a r a m e t e r name=”name” v a l u e =” l o c a l ” /></ s c e n : p l a t f o r m>
2
3 < s c e n : i n i t i a l><s c e n : c o n t a i n e r name=” C o n t a i n e r ”>
4 <s c e n : a g e n t>
5 <s c e n : c o m p o n e n t name=” p a r a m e t r i c ” />
6 <s c e n : c o m p o n e n t name=” v i s u a l i z a b l e ” />
7 <s c e n : c o m p o n e n t name=” messag ing ” />
8 <s c e n : c o m p o n e n t name=” t e s t i n g ” c l a s s p a t h =” s c e n a r i o . examples . PingBackTestComponent ”>
9 <s c e n : p a r a m e t e r name=” o t h e r a g e n t ” v a l u e =” AgentB ” />

10 <s c e n : p a r a m e t e r name=” i n i t i a t o r ” v a l u e =” t r u e ” />
11 </ s c e n : c o m p o n e n t>
12 <s c e n : p a r a m e t e r name=” l o a d e r ” v a l u e =” c o m p o s i t e ” />
13 <s c e n : p a r a m e t e r name=”name” v a l u e =” AgentA ” />
14 </ s c e n : a g e n t>
15 <s c e n : a g e n t>
16 <s c e n : c o m p o n e n t name=” p a r a m e t r i c ” />
17 <s c e n : c o m p o n e n t name=” v i s u a l i z a b l e ” />
18 <s c e n : c o m p o n e n t name=” messag ing ” />
19 <s c e n : c o m p o n e n t name=” t e s t i n g ” c l a s s p a t h =” s c e n a r i o . examples . PingBackTestComponent ” />
20 <s c e n : p a r a m e t e r name=” l o a d e r ” v a l u e =” c o m p o s i t e ” />
21 <s c e n : p a r a m e t e r name=”name” v a l u e =” AgentB ” />
22 </ s c e n : a g e n t>
23 </ s c e n : c o n t a i n e r></ s c e n : i n i t i a l>

Figure 5. Snippet of a scenario file, specifying a simulation using the local communication platform, in which each of the two agents contains a parametric,
a visualizable and a messaging component, together with a custom component which may have some parameters. The loader for each agent, as well as agent
names, are also specified.

• “Clear agents” button is pressed – all agents receive a
message to exit;

• “Exit” button is pressed – Simulation Link Agents exit
and all platforms are closed; the Simulation Manager
exits and closes the JVM.

In the first phase, the scenario file is loaded and parsed.
Based on the information in it, the classes for platform loaders
and agent loaders are identified and instantiated. For each
agent agent data is preloaded and components are created.
Platforms are started and local containers are created.

After all platforms have been started, the Simulation Man-
ager is started, which in turn loads, on each platform, a
Simulation Link Agent.

When the user presses the “Create Agents” button, the
Simulation Manager uses the appropriate Agent Loader to load
each agent, based on the agent’s creation data, starts it, then

invokes the appropriate Platform Loader to load the resulting
Agent Manager instance onto the platform. Each agent is then
enrolled with the Simulation Link Agent in its platform, to
which it will report visualization data.

When the user presses the “Start” button, if the agents
have not yet been created, they are created. Then, it signals a
START SIMULATION event to all agents, and starts processing
events on the scenario timeline (if any).

The simulation continues normally until the “Clear Agents”
button is pressed. At this point the Simulation Link Agents
broadcast a STOP event to all agents. Then the “Exit” button
stops the platforms and closes the Simulation Manager. If the
agents had not been cleared, agents are cleared and then the
platforms stops.

To facilitate monitoring the system, every agent, by means
of its Visualization Component, reports all of its logging

1 (a g e n t ChatAgent ? o t h e r A g e n t
2 (b e h a v i o r
3 . . .
4 (r e a c t i v e snd
5 (i n p u t m e s s a g e i n p u t t e x t ? sendMessage) / / t h e a g e n t i s n o t i f i e d t h e r e i s a message t o send
6 (readK (s t r u c t knowledge s e q u e n c e ? s e q u e n c e)) / / read t h e s e q u e n c e number from t h e knowledge base
7 (removeK (s t r u c t knowledge s e q u e n c e ? s e q u e n c e)) / / remove t h e s t o r e d s e q u e n c e
8 (addK (s t r u c t knoweldge msg s e n t ? s e q u e n c e ? sendMessage)) / / s t o r e t h e message i n KB
9 (i n c r e m e n t ? s e q u e n c e ? newsequence) / / i n c r e m e n t t h e s e q u e n c e

10 (addK (s t r u c t knowledge s e q u e n c e ? newsequence)) / / s t o r e t h e s e q u e n c e
11
12 (send ? o t h e r A g e n t (s t r u c t message newchat ? sendMessage)) / / send t h e message
13
14 (i n i t O u t p u t ?? o u t p u t) / / w i l l i n i t o u t p u t t o an empty s t r i n g
15 (f o r A l l K (s t r u c t knowledge msg ?? d i r e c t i o n ?? s e q u e n c e ?? message) / / go t h r o u g h a l l messages
16 (a s s e m b l e O u t p u t ?? d i r e c t i o n ?? s e q u e n c e ?? message ?? o u t p u t)) / / p u t them i n t h e ?? o u t p u t v a r i a b l e
17 (o u t p u t c h a t l o g ?? o u t p u t) / / d i s p l a y
18))

Figure 6. S-CLAIM code for one of the two reactive behaviors in a chat agent. The behavior is triggered by message input. It then increments the sequence
stored in the knowledge base, stores the message in the KB and sends it, then reads the messages in the KB and assembles them for output. See how Java
functions (such as increment, initOutput and assembleOutput) are called in the same manner as standard primitives.

Figure 7. Various GUIs of the Smart Conference S-CLAIM application, deployed using tATAmI-2. One can also see the GUI of the Simulation Manager
and the Simulation Link Agent (SimAgent-jade).

messages to the Simulation Link Agent on the same platform.
These messages are gathered, sorted according to their times-
tamp, and displayed in order, so that the user can follow the
evolution of all the agents in the system, even if they are on
different machines.

To facilitate visualization, the WindowLayout class is used
to automatically layout the windows corresponding to various
agents on the screen, so the user does not have to arrange
windows by hand.

V. DEPLOYING MAS WITH TATAMI-2

Deploying multi-agent systems with tATAmI-2 does not
require knowledge of the details of the framework’s imple-
mentation.

If agents are implemented in S-CLAIM, the developer
only needs to modify a scenario file that is provided in
the examples in the project, and then write the S-CLAIM
code. If algorithmic processing is needed (functions such as
increment in Figure 6) and not yet implemented, only basic

Java knowledge is required3.
For developers wishing to implement functionality as com-

ponents for the Composite Agent, it is only required to be
familiar with two things: the functionality offered by standard
tATAmI-2 components (such as the Visualization Component)
and the functionality offered by the AgentComponent class.
All standard components are thoroughly documented.

tATAmI-2 already contains default Parametric, Visualiza-
tion, Cognitive and S-CLAIM components, as well as mes-
saging components and platforms for local messaging and for
Jade. A WebSocket messaging platform is under implementa-
tion.

Once all necessary classes exist and the scenario file has
been created, the tATAmI-2 system can be started by passing
the scenario name to the tATAmI-2 application. Except for the
Java Runtime Environment, no other requirements for the host
system exist.

3The reader may view an example at https://github.com/tATAmI-Project/
tATAmI-PC/blob/tATAmI-2/master/src-scenario/scenario/examples/sclaim
tatami2/simpleScenarioE/ChatFunctions.java

For scenarios involving multiple machines, it is sufficient
that tATAmI-2 finds the scenario file on the ’central’ (or
’main’) machine, much like in Jade. On other machines,
tATAmI-2 can be started by specifying in the program argu-
ments the IP of the central machine and the name(s) of the
local container(s).

One of the prominent features of tATAmI-1 is the possibility
to deploy agents on the Android platform, by using Jade
for Android. While tATAmI-2 has not yet been deployed on
Android, all the core functionality is platform-independent,
and it is compatible with the way tATAmI-1 was ported, so
tATAmI-2 portability to Android is just around the corner.

A. Deployment Case

In the spring semester of 2014, during her bachelor thesis,
Emma Sevastian has developed a relatively large, distributed
application using S-CLAIM over tATAmI-2 [15]. The appli-
cation related to an initiative to build an AmI application
for Smart Conferences. In the scenario, there is an agent for
each conference participant – participants can be speakers
and chairs of conference sessions. The application handles the
lifecycle of conference sessions and notifications for speakers
when sessions they are interested in begin. The GUIs shown
in Figure 7 belong to various agents in the system.

VI. CONCLUSION

In a world of complexity, we have created a modular, flexi-
ble agent development framework that allows the developer to
change and customize every aspect in the implementation of
agents and platforms. At the same time, standard components
and platforms, already implemented and ready to use, allow
the developer to boot an agent simulation in minutes (having
already implemented any application-specific functionality).

The framework provides tools to deploy and monitor multi-
agent systems across multiple machines, and will soon be
available for Android devices as well.

Future work consists, in the near future, of including more
functionality in tATAmI-2, primarily communication using
WebSockets and agent mobility at execution time. Other
features that will be implemented involve the integration of
context-awareness as a first-class notion for agents, and more
powerful knowledge representation, using context graphs and
patterns.

ACKNOWLEDGMENT

The authors would like to thank Thi Thuy Nga Nguyen and
Diego Salomone-Bruno for their participation in the first de-
mos of AmI applications using CLAIM; Marius-Tudor Benea
for his great implication in tATAmI-1, precursor of tATAmI-2;
Amal El Fallah Seghrouchni and Cédric Herpson for their
help in coordinating tATAmI-1 progress; and finally Emma
Sevastian for her dedication in improving early versions of
tATAmI-2 and building a complex application deployed using
tATAmI-2. And finally professor Adina Magda Florea for
coordinating the research efforts of the AI-MAS Laboratory.

The work has been funded by the Sectoral Operational
Programme Human Resources Development 2007-2013 of the
Ministry of European Funds through the Financial Agreement
POSDRU/159/1.5/S/134398.

REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa, “Developing multi-agent
systems with JADE,” Intelligent Agents VII Agent Theories Architectures
and Languages, pp. 42–47, 2001.

[2] L. Braubach and A. Pokahr, “Jadex active components framework-BDI
agents for disaster rescue coordination.” Software Agents, Agent Systems
and Their Applications, vol. 32, pp. 57–84, 2012.

[3] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelli-
gent agents-summary of an agent infrastructure,” in 5th International
conference on autonomous agents, 2001.

[4] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning.”
in AAAI, vol. 87, 1987, pp. 677–682.

[5] M. d’Inverno, M. Luck, M. Georgeff, D. Kinny, and M. Wooldridge,
“The dMARS architecture: A specification of the distributed multi-agent
reasoning system,” Autonomous Agents and Multi-Agent Systems, vol. 9,
no. 1-2, pp. 5–53, 2004.

[6] M. Lützenberger, T. Küster, T. Konnerth, A. Thiele, N. Masuch,
A. Heßler, J. Keiser, M. Burkhardt, S. Kaiser, and S. Albayrak, “JIAC
V: A MAS framework for industrial applications,” in Proceedings of
the 2013 international conference on Autonomous agents and multi-
agent systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2013, pp. 1189–1190.

[7] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007,
vol. 8.

[8] S. Russell, H. Jordan, G. M. O’Hare, and R. W. Collier, “Agent factory:
a framework for prototyping logic-based AOP languages,” in Multiagent
System Technologies. Springer, 2011, pp. 125–136.

[9] C. Muldoon, G. M. P. O’Hare, R. W. Collier, and M. J. O’Grady, “Agent
factory micro edition: A framework for ambient applications,” in Pro-
ceedings of ICCS 2006, 6th International Conference on Computational
Science, Reading, UK, May 28-31, ser. Lecture Notes in Computer
Science, V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, Eds., vol. 3993. Springer, 2006, pp. 727–734.

[10] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi,
“Multi-agent oriented programming with JaCaMo,” Science of Computer
Programming, vol. 78, no. 6, pp. 747–761, 2013.

[11] M. J. North, N. T. Collier, J. Ozik, E. R. Tatara, C. M. Macal,
M. Bragen, and P. Sydelko, “Complex adaptive systems modeling with
repast simphony,” Complex Adaptive Systems Modeling, vol. 1, no. 1,
pp. 1–26, 2013.

[12] V. Baljak, M. T. Benea, A. El Fallah Seghrouchni, C. Herpson,
S. Honiden, T. T. N. Nguyen, A. Olaru, R. Shimizu, K. Tei,
and S. Toriumi, “S-CLAIM: An agent-based programming language
for AmI, a smart-room case study,” in Proceedings of ANT 2012,
The 3rd International Conference on Ambient Systems, Networks
and Technologies, August 27-29, Niagara Falls, Ontario, Canada,
ser. Procedia Computer Science, vol. 10. Elsevier, 2012, pp. 30–
37. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1877050912003651

[13] M. Chiperi, M. Trascau, I. Mocanu, and A. M. Florea, “Data fusion in
a multi agent system for person detection and tracking in an intelligent
room,” in Intelligent Distributed Computing VIII. Springer, 2015, pp.
385–394.

[14] A. Suna and A. El Fallah-Seghrouchni, “A mobile agents platform:
architecture, mobility and security elements,” in Programming Multi-
Agent Systems. Springer, 2005, pp. 126–146.

[15] I.-E. Sevastian, “Agentbased android application for conference
participants,” University Politehnica of Bucharest, Bachelor Thesis,
September 2014. [Online]. Available: http://aimas.cs.pub.ro/amicity/
doc/EmmaSevastian-document.pdf

