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Abstract. Context-awareness is a key feature of Ambient Intelligence
and future intelligent systems. In order to achieve context-aware behav-
ior, applications must be able to detect context information, recognize
situations and correctly decide on context-aware action. The representa-
tion of context information and the manner in which context is detected
are central issues. Based on our previous work in which we used graphs to
represent context and graph matching to detect situations, in this paper
we present a platform that completely handles context matching, and
does so in real time, in the background, by deferring matching to a com-
ponent that acts incrementally, relying on previous matching results. The
platform has been implemented and tested on an AAL-inspired scenario.
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1 Introduction!

Ambient Intelligence — or Aml — is one of the current priorities in the world of in-
telligent distributed systems. In order to appear as truly intelligent, and in order
to provide the user with the appropriate information at the right time, or with
the appropriate, non-intrusive assisting action [1], Aml relies on several essential
features, such as system distribution, fusion of information from a large number
of sensors, detection of context and context-aware action. Context-awareness [2]
is the ability of a system or application to correctly identify the situation of the
user based on a large quantity of information, and to take appropriate action in
that situation.

This work has as framework the AmlciTy? initiative to build a software
infrastructure for Ambient Intelligence. The initiative relies on two key features.
One is the use of agent technology as an enabler of individual autonomy and
of distributed, reliable behavior for the system. The other is a representation of
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context information that is adequate for a distributed system, allowing both an
efficient management of context information at the system level, and context-
awareness at the individual level, without the mandatory presence of context
servers and other centralized components.

In the architecture of the AmlIciTy system [3], context information is han-
dled in a distributed manner by persistently storing in each agent the context
information that is relevant to its activity. Agents also exchange between them
information that is potentially relevant to other agents. Context information is
stored in agents as context graphs (or CGs), that are very much like seman-
tic networks — graphs having concepts as nodes and relations as edges. Each
agent also stores a set of context patterns (or, in short, Patterns), that describe
situations as graphs with generic (wildcard) nodes. Agents detect the current
situation by matching patterns against the CG and take action as indicated by
the matching pattern(s). This is what we call context matching.

Although graphs are a great way to visually and comprehensively represent
information, the drawback of our method is that the general problem of graph
matching is NP-complete [4]. However, we have shown in the past that since most
of the nodes and edges in context graphs are labeled, the computational effort of
matching the graphs is greatly reduced, by using a purpose-built algorithm that
starts from single-edge matches and grows them to reach the maximum common
subgraph (MCS).

This paper deals with how to perform context matching in an efficient, timely
fashion, even when context changes very quickly. In this work we describe the
architecture and implementation of a context matching platform that increases
the efficiency of matching by relying on two facts: first, changes in the context
graph are incremental, even if they are rapid; second, the context patterns remain
quasi constant throughout the operation of the system — they are added or
removed relatively rarely. This means that, at the expense of keeping part of the
(partial) matches in memory, new matches can be obtained quickly when the
context graph changes, based on the partial matches stored in memory.

The proposed platform is able to handle rapid changes in the context graph
while performing matching in the background. It uses queues of transactions
to follow changes in the sequence in which they happened. Matches that are
detected in the background are notified to the host process through a mechanism
of notifications. This paper not only introduces these new features of platform,
but also makes a comprehensive, focused presentation of the whole architecture,
in order to allow, together with the open source implementation®, the use and
replication of these results by other researchers.

After discussing some related work, we present the formalism of context
graphs in Section 3, followed by the introduction of the Continuous Context
Matching Platform and related concepts in Section 4. Section 5 shows some
experimental results and the last section draws the conclusion.

3 The implementation is freely available under a GPLv3 license at
https://github.com/andreiolaru-ro/net.xqhs.Graphs .



2 Related Work

Modeling of context information uses representations that range from tuples to
logical, case-based and ontological representations [5]. The most popular ap-
proaches are ontologies for representing situations and rules for reasoning, cou-
pled with propositional or predicate logic to represent current context informa-
tion. We have previously advocated context graphs as an appropriate method
to represent context, that couples a simple theoretical formalism with a visual
representation and powerful algorithms for graph matching [6]. Ontologies are
used in many projects to describe potential situations or situation elements and
to establish the relations among the elements of context. Several ontologies have
been created specifically for use in context-aware computing (e.g. SOUPA [7]).
The main criticism regarding ontologies is a lack of support for temporal re-
lations, the lack of dynamicity, and the large space and temporal complexity
required for ontological reasoning [8]. The mechanisms we propose are directed
towards system distribution, local storage of context information and local rea-
soning. The work of Turner et al shows how context-mediated behavior (CMB)
[9] can be used to adapt behavior to cases that have not been encountered before,
but share similarities with existing cases, much like we use patterns for context
recognition. Our research is somewhat similar in behavior but we use structures
that are easy to represent graphically and to visualize.

In terms of using graphs, in their works in 2004 and 2014 respectively, Conte
and Foggia [4,10] analyze the use of graphs in pattern matching in the last
40 years. Graph matching has gained traction since the beginning of the mil-
lennium, as computational power increased and NP-complete problems became
more approachable. It is notable that in every application domain where graphs
are used there are specific challenges related to the process of pattern matching,
but algorithms are customized starting from classical, generic graph-matching
algorithms, like the ones enumerated in the rest of this section. None of those
fields has, however, the same particular constraints as our problem, therefore in
this and previous work, algorithms had to be adapted to solve it.

We may classify graph matching algorithms in two major categories: exact
matching, when the reference structure must be found entirely in the examined
structure; and inexact matching, when a match might be valid even if the two
entities are different to a certain extent. Among the most important algorithms
for matching of unlabeled graphs are tree-search algorithms [11] and algorithms
for the matching of a graph against a library of graphs [12]. Some algorithms,
especially those for inexact matching [13], are based on powerful mathematical
instruments — like expectation maximization [14], graduated assignment [15],
and learning of assignment coefficients [16].

We have previously adapted several popular algorithms for graph matching
in order to observe their behavior on context matching problems [17]. The al-
gorithms that we have focused on were algorithms that can be adapted to the
problem of context matching: they rely on label comparison and can be adapted
to deal with generic edges and nodes. Among them, algorithms using incremental
matching by exploring the entire state space (McGregor’s algorithm [18]); algo-



rithms using the equivalence between finding a maximal clique and finding the
maximum common subgraph (algorithms by Bron-Kerbosch [19], Durand-Pasari
[20], Akkoyunlu [21] and Balas-Yu [22]); and algorithms using the equivalence
with the maximal clique, but considering an extended modular product of the
edges, not of the nodes (Koch’s [23]). While we have found that some of these
algorithms have certain advantages with respect to our problem, there was room
for improvement. While testing algorithms for matching a pattern to a graph,
the algorithm we have developed in previous work was by far the most efficient
for all test cases.

While connected with, and sometimes inspired by related research, this work
is innovative not only due to the approach we have to using graph matching
for context awareness, but especially due to the purpose-built algorithms and
methods that we have developed in order to make context matching viable in a
distributed setup of resource-constrained devices.

3 Formal Model

In an Ambient Intelligence system, each agent should have a representation of
the information that is interesting to it, and also the means of detecting what
information is interesting to it from the stream of information that it receives
6]).

Each agent A has a Context Graph CG4 = (V, E) that contains the infor-
mation that is currently relevant to its function. Considering a global set of
Concepts (strings or URISs) and a global set of Relations (strings, URIs or the
empty string, for unnamed relations), we have:

CG4 = (V,E), where V C Concepts

E = {edge(from,to,value, persistence) | from,to € V,value € Relations}

In order to implement forgetting information, or limited validity of informa-
tion, edges feature an element of persistence. They can be permanent, or they
may have an ’expiration time’, after which they are removed. The persistence
of edges is set when they are added to the graph, according to settings in the
pattern that generated the edge (see below).

In order to detect relevant information, or to find potential problems, an
agent has a set of patterns that it matches against graph C'G 4. These patterns
describe situations that are relevant to its activity. A pattern s is defined by a
graph G, We will use the “ ¥ 7 superscript to mark structures that support
generic elements, such as generic nodes:

Gf = (Vsp’ Ef)

VE C Concepts U{?}

EF = {edge(from,to,value) | from,to € VE value € Relations U {\}}

We have used A\ as a notation for the empty string. Examples of a pattern
and a graph are shown in Figure 1.

By using graph matching algorithms — matching a pattern from the agent’s
set of patterns against the agent’s context graph — an agent is able to detect
interesting information and is able to decide on appropriate action to take.
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Fig. 1. Example of context graph and pattern. The pattern 3-matches the context
graph.

The pattern G matches the subgraph G’y = (V', E'), iff there exists an
injective function f, : VX' — V', so that the following conditions are met simul-
taneously:

(1) Yof € VE vF =2 or vF = f(v?) (same value)

(2a) Yedge(vy, vl rel) € EL, edge(f(vf), f(v]), value) € E', value €
{rel, \}

(2b) Vedge(v], v, A) € EF, Jvalue € Relations, edge(f(v]), f(v]), value)
EFE

That is, every non-? vertex in the pattern matches (has the same label) a
different vertex from G’4 (f, is injective), and every edge in the pattern matches
(same label for the edge and vertices) an edge from G’;. Subgraph G’ should be
minimal (no edges that are not matched by edges in the pattern). One pattern
may match various subgraphs of the context graph.

We allow partial matches. A pattern GE k-matches a subgraph G’ of G,
if conditions (2) above are fulfilled for m, — k edges in EF, k € {1.m, — 1},
ms = ||E¥|| and G’ remains connected and minimal. The k number of a match
is the number of edges in the pattern that have not been found in the graph.
For a complete match, k is null.

Partial matches are useful because, depending on a set threshold for k, they
indicate actionable cases. A small k indicates that the user is indeed in the
situation described by the pattern. A strictly positive k indicates however that
there is something missing. Depending on the settings of the pattern, this either
indicates that the agent should issue a notification about the missing edge(s),
or, if the missing edges are actionable, the agent may add them to the graph,
with a certain persistence.

‘We have also developed a formalism, called timelines, for higher-level patterns
which match a certain temporal sequence of pattern matches. While the context
matching platform currently supports the detection of timelines, the focus of
this paper is on efficiently matching individual patterns.

4 Platform Architecture

The architecture of the platform that is presented in this paper has been designed
specifically for the problem of context matching. More precisely, having a context
graph, presumably quite large, and a number of context patterns (this number
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Fig. 2. Shadow graphs take transactions from transaction queues to which the tracking
graph appends operations.

depends on the complexity of the functionality of the device / agent), that have
a relatively small size compared to the graph, we desire to obtain notifications
when a match is found between the current CG and a Pattern (the k is chosen
by the user), and also when a previously reported match disappears.

Performance-wise, we desire that the notification comes in a timely fashion
(while allowing some small delay), and that no changes are overlooked. For in-
stance, if, as a result of a perception, an edge appears in the CG, and then
immediately disappears, and that edge completes a match, we wish that match
to not be missed, even if before these events the system worked on obtaining
other computationally intensive matches.

The challenges in developing the platform were, on the one hand, to not miss
any changes, and on the other hand, to obtain reasonable performance at the
expense of some memory space.

The platforms relies on an algorithm developed in previous work [6], that
is limited to matching one pattern to one graph. In short, the algorithm grows
and merges matches. It starts with creating one potential match for each pair of
matching edges in the graph and in the pattern (same edge label and matching
labels for adjacent vertices). For each match a set of candidates for merger is
computed, based on common frontier vertices in the two matches and on the fact
that matches should not overlap. Matches that share a common frontier are 'im-
mediate’ merger candidates. Matches that are compatible, but not adjacent, are
‘outer’ merger candidates. In the second phase of the algorithm, using these two
candidate sets for each match, matches are merged incrementally with immediate
candidates. The gist is that compatibility between matches does not need to be
checked in the second phase, because it is insured by computing new candidate
sets as set operations between the candidate sets of the merged matches. For
instance, the resulting outer candidate set is the intersection between the outer
candidate sets of the merged matches — that is, candidates that were compatible
(not overlapping) with, but not immediate merge candidates for any of the two
merged matches.
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Fig. 3. Architecture of the Continuous Context Matching Platform. The dotted line
separates the part that works in real time from the components that do matching
sequentially, in the order of transactions applied to the Context Graph.

4.1 Tracking Changes

In order to correctly track changes in the context graph, we have created a
special structure called a tracking graph. As the normal operations in a graph are
addition and removal of nodes and edges, the tracking graph is modified by means
of transactions. A transaction contains any number of operations, each of the
operations being the addition or removal of a node or edge. The only condition
is that the same transaction does not simultaneously contain the addition and
the removal of the same graph component. Whenever a transaction is applied
to a tracking graph, the operations in the transaction are applied immediately.
A transaction is considered atomic — there is no state in which only part of the
operations in a transaction are applied.

However, a tracking graph may have any number of shadow graphs (see Fig-
ure 2). When it is created, a shadow graph is a snapshot of the tracking graph
(they are identical). Whenever a transaction is applied to the tracking graph, it
is added to the transaction queue of each shadow graph. Shadow graphs only
update their state when an increment operation is invoked. One increment in-
vocation causes the shadow graph to take one transaction from the queue and
apply it to the graph.

This way, the matching process can be safely performed on the shadow graph,
regardless of what changes happen in the tracking graph in the mean time.
When the matching is finished, and if changes have occurred, the shadow graph
is incremented and the matching process is started again.

4.2 Incremental matching

When using the algorithm presented at the beginning of the section, whenever
the context graph changes, the matching process must be done again completely,
wasting resources even if, for instance, an edge has been added that cannot be



found in any pattern. Resources could be saved, because, if the CG changes
only slightly, for every pattern most of the partial matches, and potentially
the matching process entirely, remain unchanged with respect to the previous
matching.

It is therefore possible to remember partial matches that have been created
previously. When a new edge is added, and it matches an edge in a pattern,
a single-edge match is created, candidates are computed, and potentially the
match is merged with a pre-existing, hopefully maximal, match. Computing the
candidate sets is not even too difficult: the match is compatible with all matches
that do not contain the pattern edge, and it can be immediately compatible only
with candidates containing neighbor edges (in the pattern).

Of course, it may be that with modifications in the graph, some partial
matches that are stored become invalid. Therefore an index is stored of what
edges in the graph are part of which matches. Whenever an edge is removed, all
matches that it was part of are removed as well.

4.3 Continuous Context Matching Platform

The CCM platform (see Figure 3) completely deals with the matching of a
set of patterns against a context graph. At any time, the context graph can
be modified. The CCM platform uses, internally, a component that is called a
Graph Matching Platform (GMP). The GMP is capable of obtaining all matches
of a set of patterns against a context graph. An incremental process, called a
Matching Process, is attached to each of the Patterns. When there are changes
in the CG, Matching Processes are executed by a pool of threads, giving priority
to the patterns which are closest to the changed edges (simple label comparison
is performed). Matching Processes work on shadows of the CG.

A Matching Process holds two indexes of matches — for each edge in the
graph, the list of matches containing that edge, and for each in the pattern, the
list of matches containing it. When an edge in the graph is removed, all matches
containing that edge are declared invalid and will be removed whenever they are
iterated over. When an edge is added to the graph, initial matches are created
(against matching edges from the pattern) and merge candidates are added from
among the matches of the neighbor pattern edges.

4.4 Complexity Considerations

While the matching of graphs with unlabeled nodes and edges is an NP-complete
problem, labels greatly improve the performance of the process. This section
extends our previous analysis [6] but focuses on real-time matching.

Since a certain number of matches are kept in memory and the matching is
done incrementally, the largest computational effort is when the initial matches
are created, that is when new Patterns are added. Later, matching processes
are executed whenever an edge is added or removed in the CG. When an edge
is added, It is first matched against all edges in the pattern in an attempt to
create a single-edge match. For all patterns, this means one label comparison
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Fig. 4. The number of label comparisons for nodes and edges in every hour-long inter-
val.

for each pattern edge. Next, the candidate sets are computed for each resulting
single-edge match, which is done in O(m,,), where T, is the mean number of
neighbor edges for an edge in the pattern. As seen in Section 5.2, only single-edge
matches are significant computationally. Practically, the computational effort is
proportional to the number and size of patterns, but also to the branching factor
of patterns. Thanks to indexing, removing an edge from the CG is done in O(1)
for each pattern.

From the point of view of memory consumption, results show that storing
partial matches consists mostly in single-edge matches. For a CG and a pattern
with no labeled edges and nodes, there is a maximum of m x m’ matches, but
when edges and vertices are labeled, there is one single-edge match per pair of
CG edge and pattern edge with the same label and matching vertices. Practically,
performance is better when the pattern is less ambiguous.

5 Experiments with Matching Context

The Continuous Context Matching Platform was implemented? in Java, so it can
be executed on workstation platforms as well as on Android devices. The tested
scenario, taken from the AAL domain, takes place in the home of an elderly
woman named Emily. Emily is aged 87 and lives alone in a small apartment.
Motion sensors in the home track Emily. The system, running on a limited piece
of hardware, must be able to promptly detect the current activity of Emily, based
solely on location detection.

5.1 Experimental Setup

Each experiment is a simulation using an automatically generated scenario which
takes place over 24 hours — one day in Emily’s life.
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Fig. 5. The number of matches and labels stored in memory to allow incremental
matching.

Emily’s apartment is consists of a living room, a hall, a kitchen and a bath-
room. Each of the first three rooms is equipped with a motion detector, and
there is a detector to know whether someone is near the bathroom door. There
are no sensors in the bathroom. The context graph of the system contains nodes
referring to the current state of Emily, the layout of the rooms, food in the fridge,
etc (about 50 nodes).

Emily sleeps between 10PM and 7AM. During the day, she eats two or three
times, goes to the bathroom, and may take a shower. At times she wanders
around the house and spends time in the kitchen without eating anything, just
sitting down and looking out of the window.

In order to generate a 24h long scenario, we use a generator that inserts
various activities (one of sleeping, having a meal, going to the bathroom, taking
a shower, wandering around the house, and doing nothing) at various moments
of time, using a distribution of probability for each type of activity. For example,
if Emily just ate, she will not eat again for the following 3 or 4 hours, but after
that the probability of her deciding to eat will increase with time. Depending on
their type, some activities may have variable durations.

5.2 Results

We have executed the Continuous Context Matching Platform on 24-hour long
scenarios in compressed time. We have mapped every second in simulation time
to a millisecond in real time, but the platform had no problem completing the
matches in that millisecond, even on older, slower, machines.

Incremental matches mean that the number of operations is very low at any
given time. In Figure 4 a chart is shown of the number of label comparisons,
for nodes and for edges, for every hour of simulated time. We have chosen to
show label comparisons because they are the most computationally intensive
operation while performing the matching.

Of course, incremental matching brings performance at the expense of mem-
ory consumption. In order to evaluate the tradeoff, we have monitored how the



number of stored matches evolves over time. We have also inspected the total
number of edges in stored matches. These results are shown in Figure 5, in the
context in which no optimization of memory space was done (e.g. activating a
strategy in which some partial matches are removed in time).

A first observation would be that the number of matches grows steadily with
time and does not reach a very high number. The matches can be stored even
on devices with low capabilities. Secondly, it is interesting to observe that the
difference between the number of matches and the total number of edges stored
in matches is very small. Basically, all matches are single-edge matches. The
platform could therefore be optimized to keep only larger (much fewer) matches
and recreate less used single-edge matches, in case memory is constrained and
the device handles many patterns.

6 Conclusion

Although the problem of graph matching is computationally difficult, using
graph for representing context is an approach that is flexible, easy to under-
stand, and suitable to detecting context by matching patterns against a graph.
This paper presents a platform for graph matching that uses tracking graphs in
order not to miss any rapid sequences of operations, and uses incremental match-
ing, at the expense of some memory, to keep the useful results in the matching
process for future matchings.

An implementation is currently underway for a set of tools that allows work-
ing in a uniform manner with varied datasets of activity data, some very large.
The presented platform will be deployed against such datasets in the near future.
On the medium term, our goal is to build a large experiment in which context
matching will be used by a large number of agents, on the same machine, so
as to full understand the impact of the performance and memory tradeoffs that
exist in the implementation.

As a long term goal, the deployment of AmlciTy on multiple machines and
platforms (such as smartphones) will enable us to apply machine learning to
improve patterns and learn new patterns by tracking the user’s activity.
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