\\TEHN;,
<°]

AI-TAS Group UPMC

IaR1 PARIS
Artificial Intelligence and University ”Politehnica” of Université Pierre et Marie
Multi-Agent Systems Bucharest Curie Paris

Laboratory

Towards a MAS-Based Model for Ambient Intelligence
1st PhD Research Report

Andrei Olaru

AI-MAS Laboratory, Computer Science Department, University ”Politehnica” of
Bucharest

i co-tutelle with

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie

PhD Thesis Title: A Context-Aware Multi-Agent System for AmI Environments

Supervisors:

Prof. Adina Magda Florea

AI-MAS Laboratory, Computer Science Department, University ” Politehnica” of
Bucharest

Prof. Amal El Fallah Seghrouchni

Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie

September 2010

Contents

1 Introduction

1.1 What is Ambient Intelligence?
1.2 Scenarios.
1.3 Amland MAS.
1.4 Research Approach

2 Implementing Aml Environments Using Multi-

Agent Systems
2.1 A Stateof The Art
2.2 Context-Awareness

3 Self-Organizing Agents for Ambient Intelligence
3.1 The Problem
3.2 Design Rationale o
3.3 System Structure
3.4 Context-Awareness
3.5 Agent Structure L
3.6 Agent Behaviour
3.7 Results.
3.8 Future Work

4 A Context-Aware Multi-Agent System in CLAIM
4.1 CLAIM and Sympa
4.2 SCENArio e
4.3 System Architecture
4.4 System Behaviour
4.5 Future Work Lo

5 Conclusion

6 Future Work

10
10
13

15
15
15
16
17
19
20
22
26

27
27
29
30
31
32

33

33

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 5

1 Introduction

1.1 What is Ambient Intelligence?

The term of Ambient Intelligence has been coined at the dawn of the 21st century, in
2001 [DBS*01], when it became one of the priorities in the ICT domain in the European
Union and worldwide. Ambient Intelligence — or Aml, for short — was envisaged as a
ubiquitous, unitary, electronic environment that would assist people in many or all of
their life’s aspects and in a considerably varied number of manners ((from spoken, wise
advice to traffic and weather control).

Ambient intelligence should represent the third wave in computing [RVDAO05]. After the
mainframe and the personal computer, in the age of Ambient Intelligence the devices
become invisible, by being integrated in all objects and materials. This makes everything
become "smart” and, by means of communication, everything around us will collaborate
in order to offer more complex functions and more relevant results. Aml also represents
an evolution of what is now the Internet: web-based, collaborative and social services
that assist the user in daily activities.

The origins of Ambient Intelligence lie in the domain of Pervasive Computing, or Ubiq-
uitous Computing — or UbiComp. These terms were introduced by Weiser in 1991
[Wei95, Wei93]. The elements of UbiComp come from previously existing domains like
Distributed Computing and Mobile Computing, adding the idea of smart spaces, invisi-
bility, localization and dealing with uneven conditions [Sat01] (see Figure 1).

While Ubiquitous Computing means that people are surrounded with devices that offer
different types of services, Ambient Intelligence emphasizes the idea of intelligent aggre-
gation of services and action, the idea of a proactive and invisible system that helps the
user, and the existence of intelligent interfaces with which the user can interact in an
intuitive manner.

The realization of Ambient Intelligence as Mark Weiser [Wei95] or the ISTAG Group
[DBS*01] have seen it is still a long way ahead, many features of Ambient Intelligence
environments have been identified, as presented below.

By being a large system, an Aml environment must necessarily be organized on layers.
The same happens with the Internet today: by being a distributed, decentralized, large,
flexible and multi-purpose system, it is organized on layers. For Aml the following layers
have been proposed [Seg08] (see Figure 2):

e the hardware layer is composed of all the devices that are part of the Aml envi-
ronment: sensors, actuators, controls (e.g. light switches), mobile phones, displays,
laptops, computers, etc. The devices in the hardware layer are extremely hetero-
geneous from the point of view of computational and storage capacities, but all of
them must feature some sort of connectivity.

e the interconnectivity layer allows connections between the devices in the hardware
layer. It may use wired or wireless networks, and it may use a wide range of
protocols: WiFi, Bluetooth, Infrared, GSM, etc.

6 Towards a MAS-Based Model for Ambient Intelligence Andrei Olaru

Remote communication
protocol layering, RPC, end-to-end args . . .

Fault tolerance
ACID, m‘o—phase cominit, nested fransactions . . .

High Availability Distributed Mobile Pervasive
replication, rollback recovery, . . . Systems Computing Computing
Remote information access A 4

dist. file systems, dist. databases, caching, . . .

Distributed security
encryption, mutual authentication, . . .

Mobile networking
Mobile IP, ad hoc nefworks, wireless TCP fixes, . . .

Mobile information access
disconnected operation, weak consistency, . . .

Adaptive applications
proxies, transcoding, agility, . .

Energy-aware systems

goal-divected adaptarion, disk spin-down, . . . Smart spaces

Location sensitivity Invisibility
GPS, WaveLan triangulation, context-awareness, . . . B . —
Localized scalability

Uneven conditioning

Figure 1: Elements in the Pervasive Computing approach (from [Sat01]).

e the interoperability layer is vital to Aml, in order for devices to be able to com-
municate freely, using uniform protocols above this level.

e the intelligent services layer is the layer that makes Aml truly ”intelligent”. It
offers services that have semantic awareness and that are adapted to the user’s
context. This is where different devices and applications collaborate in order to
solve problems more efficiently.

e the last layer is the interface: gestures, speech, voice recognition, face recognition
and many other means of human-machine communication make Aml compatible
with people that are not previously trained to use a computer and also make Aml
environments more comfortable and intuitive to use.

All of the layers presented above pose many specific challenges to researchers. But as a
whole, Aml must have two important features: first, be proactive and context-aware,
taking the right action at the right time; second, remain non-intrusive, by not disturbing
the user and letting the user focus on the activity rather than on the interface with the
computer [RVDAO5]. Also, considering the amount of personal information that Aml
environments will manage in a real case, it is essential that Aml systems are secure and
privacy-aware. While all the layers of an AmI environment must contribute to obtaining
these features, it is the layers of Intelligent Services that has the most of the contribution
in taking pro-active, context-aware decisions that appropriately assist the user.

1.2 Scenarios

In the domain of Ambient Intelligence, research goals are many times driven by scenarios
that help envisage a world enriched by ambient, pervasive, intelligent services [DBST01,
Wei95, Sat01, BB02, KBM™*02, VRV05]. So far, scenarios have most times presented the

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 7

5 . @))) @k& ///;//

bob

fri
4. o) 2209 with |
is ay has something

telephone person <z, alice we need

s
=

Figure 2: Layers of an Aml environment: hardware, interconnectivity, interoperability,
intelligent services, advanced interfaces (based on [Seg08]).

perception that one person has upon the system, with few details on how the system
should work in the background in order to deal with realistic requirements.

When thinking about Ambient Intelligence, it is important to remember the number of
devices that will be composing Aml environments, as well as the number of people that
will be using them. This is what, in the course of our research, led us to try to build
scenarios that are more oriented towards distributed, scaling implementation [OSF10].
We present one of them below:

On the largest stadium of an European capital, a concert is going to be held, by a
popular rock group of the time. Hundreds of thousands of people are participating.
Most of them have mobile phones or smartphones which run Aml agents. Young
people are more permeable to new technologies, and the agents are configured to
communicate with other agents that share the same context, while keeping personal
data private. All participants share the space, time and activity context. Aml
agents form a temporary, anonymous social network, communicating not by means
of the Internet or by GSM, but by local connectivity like Bluetooth or WiFi ad-hoc
networking. They exchange, anonymously, interesting news or links that are related
to the event and to the band. The users made that information public and are not
necessarily aware of these exchanges, and will view the new data after the concert.

As the concerting band will be an hour late, the organizers send this information
to the agents that manage the WiF1i access points in the area. In turn, these agents
disseminate the information to the devices connected to WiFi. The information is
of great relevance to the participants, so it spreads fast among the devices of the
people on the stadium. In case other users that are not participating to the event
received the information, their Aml agents will discard it because their users are
not participating in the event, so the information is not relevant.

Finally, the concert begins. Towards the end, a pyrotechnic event causes a fire on
the stage. For security reasons, the public must be evacuated. Panic breaks out.
The GSM network soon becomes unavailable and the WiFi hotspots are overloaded.

8 Towards a MAS-Based Model for Ambient Intelligence Andrei Olaru

Special emergency devices connect to Bluetooth phones that are located near the
exists and send them directions towards the exit. From device to device, the urgent
information quickly reaches all participants. Aml agents are capable of calculat-
ing the relevance of received information according to the number of links it went
through, and choose which exit would be closer.

A few days after the concert, a group of participants that shared a lot of images
and links, but not any personal details or contact information, want to find each
other again. By using the concert site and the fact that they shared so much, their
Aml agents are capable of communicating and the group can meet again.

1.3 Aml and MAS

When dealing with Aml at its real future scale, it is clear that it must be distributed. The
Internet that we know today is fully distributed in terms of domain-name services and
routing, and for years grid services and cloud computing are on the rise. All heavy-load
web pages and services are also distributed, sometimes using data centers around the
world. As the future of what is now the Internet, Ambient Intelligence will reach a much
higher number of devices and users. It is clear that a more distributed architecture is
necessary, and one that will also inherently support anticipation and context-awareness
as a building-block function.

This is where the agent-oriented development paradigm comes in, and where the research
in Multi-Agent Systems [Fer99] can contributed to the realization of Aml. Agents offer
features that are very much needed by Aml, like reactivity, autonomy, pro-activity, the
possibility of reasoning and anticipation [RAS08]. In fact, agents offer the possibility
of moving from the distributed computing paradigm — where the designer specifies the
protocol and processing as seen from the global level — to a paradigm based on local
reasoning and interaction, where agents are design from the local point of view and the
global behaviour is emergent.

While many other researchers used software agents for the implementation of Aml envi-
ronments, there are usually two approaches that each is different from ours. One of the
approaches uses a small number of agents that retain user preferences and query context
information, but this approach are not very generic or scalable. The other approach is
focused on the coordination and self-organization of agents, but the individual agents do
not have a flexible knowledge and context representation. In this work, we are trying to
develop a system that will both scale but also be able to work with more advanced (but
nevertheless flexible) knowledge representation.

1.4 Research Approach

The goal of my PhD thesis is to design and implement a context-aware multi-agent system,
as an implementation for an Aml environment. Considering the realistic scale that is
needed for such an environment, our research approach is based on the following elements:
distribution of the system, use of software agents for all devices and services in the system,
self-organization of the agents in order to obtain emergent behaviour, and the appropriate,

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 9

context-aware representation of knowledge in order to obtain the adaptive and anticipative
behaviour of the system [Olal0].

The purpose of this report is to go into details with respect to several elements of this
approach, namely the use of software agents and the use of mechanisms of self-organization
in order to obtain emergent behaviour among the agents.

The following section presents a state of the art of the use of MAS for Ambient Intelligence,
updated from the past report [Olal0]. Section 3 discusses the implementation of a MAS
for information exchange and sharing, based on self-organization, and section 4 describes
the Ao Dai prototype of a context-aware MAS, implemented in CLAIM. The last two
sections are dedicated to the conclusions and pointers to future work.

10 Towards a MAS-Based Model for Ambient Intelligence Andrei Olaru

2 Implementing AmI Environments Using Multi-
Agent Systems

2.1 A State of The Art

The idea of using agents for the implementation of Ambient Intelligence is not new. How-
ever, there have been many approaches to doing that. Considering the layered perspective
presented in Figure 2, most of these approaches use agents, indeed, at the level of the
"intelligent” layer — the layer situate under the interface. Why is that?

This upper layer that resides below the interface is vital for the ”intelligent” features of
Aml. It is this layer that must work with knowledge and semantic information and that
must assure that users get the information that they need, where and when they need it.
It is here where AmI must use the achievements of Artificial Intelligence, trying to model,
understand, anticipate and, finally, assist the people in the real world. For these tasks,
Aml must feature sensing capabilities, autonomy, reasoning, proactivity, social abilities
and learning [RAS08]. Considering these features, one especially appropriate paradigm
for the implementation of this layer in an Aml system is the agent-oriented paradigm.

In the field of agent-based Ambient Intelligence platforms there are two main directions of
development: one concerning agents oriented towards assisting the user, based on central-
ized repositories of knowledge (ontologies), and one concerning the coordination of agents
associated to devices, and potentially their mobility, in order to resolve complex tasks
that no agent can do by itself, also considering distributed control and fault tolerance.

The first approach is closer to Intelligent User Interfaces and local anticipation of user
intentions, coming from the field of intelligent personal assistants. For instance, embedded
agents form an Aml environment in the iDorm implementation [HCC104]. Agents are
used here to manage the diverse equipment in a dormitory, resulting in the control of
light, temperature, etc. They learn the habits of the user and rules by which to manage
those parameters. The system does not require the attention of the user, except for those
moments where the user is unhappy with the system’s decision and overrides the controls.
This way the system learns and, in time, becomes invisible to the user. The organization
of the system is fairly simple, and its main component is a central agent associated with
the building.

EasyMeeting [CFJT04] is an agent-based system for the management of a ”smart” meeting
room. It is centralized, and it manages all devices in the room by means of reasoning on
appropriate action. It is based on the Context Broker Architecture (CoBrA) and uses the
SOUPA ontology.

MyCampus [SGKO05] is a much more complex system, in which agents retain bases of
various knowledge about their users, in what the authors call an e-Wallet. There are also
agents associated to public or semi-public services (e.g. printers). The e-Wallet manages
issues related to security and privacy. It represents knowledge using OWL and accesses
resources as Web Services. The e-Wallet provides context-aware services to the user and
learns the user’s preferences. Other components of the system are the Platform Manager
and the User Interaction Manager, that offer directory and authentication services in a

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 11

semi-centralized way.

The ASK-IT project [SMO06] uses agents for the assistance of elderly and impaired persons.
It uses the FIPA PTA (Personal Travel Assistance) architecture. There are several types of
agents that have different specialization: information retrieval, environment configuration,
user monitoring, service provision, etc. The structure and functions are however quite
rigid, and there is little adaptation or flexibility of the system’s features.

DALICA [CMTTO08] is a multi-agent system that uses location data for the dissemination
of information about cultural assets. It can monitor visitors and also monitor the trans-
portation of said assets. It features an interesting architecture that combines continuous
Galileo positioning with the use of ontologies and user profiles.

The second approach to agent-based Aml platforms concerns solving different issues like
user mobility, distributed control, self-organization and fault tolerance, having a more
global perspective on how an AmlI platform should function.

The SpacialAgents platform [Sat04] is a very interesting architecture that employs mobile
agents to offer functionality on the user’s devices. Basically, whenever a device (suppos-
edly held and used by a user), which is also an agent host, enters a place that offers certain
capabilities, a Location Information Server (LIS) sends a mobile agent to execute on the
device and offer the respective services. When the agent host moves away, the agent
returns to the server. Sensing the movement of agent hosts in relation with LISs is done
by use of RFID tags. The architecture is scalable, but there is no orientation towards
more advanced knowledge representation or context-awareness, however it remains very
interesting from the point of view of mobile agents that offer new capabilities.

The LAICA project [CFLZ05] brings good arguments for relying on agents in the imple-
mentation of Aml. It considers various types of agents, some that may be very simple,
but still act in an agent-like fashion. The authors, also having experience in the field of
self-organization, state a very important idea: there is no need for the individual compo-
nents to be ”intelligent”, but it is the whole environment that, by means of coordination,
collaboration and organization, must be perceived by the user as intelligent. The work is
very interesting as it brings into discussion important issues like scalability, throughput,
delegation of tasks and a middleware that only facilitates interaction, in order to enable
subsequent peer-to-peer contact. The application is directed towards generic processing
of data, which is done many times in a fairly centralized manner. The structure and
behaviour of agents is not well explained, as their role in the system is quite reduced —
the middleware itself is not an agent. However, the architecture of the system remains
very interesting.

The AmbieAgents infrastructure [LW05] is proposed as a scalable solution for mobile,
context-ware information services. There are three types of agents: Context Agents man-
ages context information, considering privacy issues; Content Agents receive anonymized
context information and execute queries in order to receive information that is relevant
in the given context; Recommender Agents use more advanced reasoning and ontologies
in order to perform more specific queries. The structure of the agents is fixed and their
roles are set. Although it may prove effective in pre-programmed scenarios, the system is
not very flexible.

12 Towards a MAS-Based Model for Ambient Intelligence Andrei Olaru

=
.S
+~
<
+
=
% A >
: : : 2
o &) > [9) o]
g z 5| B =
) 8 g ' g;@ 2| = g g
= o ! &0 > = = N S
(] 20 + (] o) = — — (<]
— e 4 = = — Q0 = < !
g 3 g = E |2 | = | =3 = <
= £ | Bl E: E|E B ¢ &
Project Name 2 3 S < % s g | « 3] 23
iDorm [acctos - - - Yes - - ? - Yes -
Spatial Agents - - - Yes | Yes | Yes | 7 - Yes -
[Sat04]
EasyMeeting Ont. | SOUPA | Yes - Yes | - ? | Yes | Yes Yes
[CFIt04]
SodaPop [melos) - - - - - - Yes | Yes No -
LAICA [(crLzos) - - - - - - Yes | Yes | partial -
MyCampus scxos] | CBR Yes Yes | Yes | Yes| - | Yes | Yes Yes some
AmbieAgents CBR Yes Yes - Yes | - | Yes | - | partial | Yes
[LWO5]
ASK-IT (smoe) - some | Yes | some - - - No Yes Yes
CAMPUS [sBstos Ont. Yes Yes | some - - Yes | Yes No Yes
Dalica [cmTTog] tuples Yes - - - - - - partial -

Table 1: Features of the systems described in Section 2.1: manner of knowledge repre-
sentation; use of ontologies; implementation of context-awareness; learning capabilities;
consideration of security and privacy-awareness; use of mobile agents; support for scala-
bility; flexibility of the architecture; centralized vs decentralized system; compliancy with
FIPA protocols.

The CAMPUS framework [SBST08] considers issues like different types of contexts [CK00]
and decentralized control. It uses separate layers for different parts of an Aml system:
context provisioning is close to the hardware, providing information on device resources
and location, as well as handling service discovery for services available at the current
location; communication and coordination manages loading and unloading agents, direc-
tory services, ACL messaging and semantic mediation, by using the Campus ontology;
ambient services form the upper layer, that agents can use in order to offer other services
in turn. The architecture is distributed, having only few centralized components, like the
directory service and the ontology.

There are other resembling proposals for Aml middleware that do not explicitly employ
agents. Hellenschmidt et al [HK04, Hel05] propose a generic topology and a self-organising
middleware for ambient intelligence (called SodaPop), aimed at coordinating appliances.
The devices are not controlled by agents, but by SodaPop Daemons that share many
features with agents, like reactivity, negotiation capabilities, and a certain degree of au-
tonomy. Each appliance is modelled as having a user interface, an interpreter, a control
application and several actuators. Between these units there are three channels, respec-
tively: the events channel, the goals channel and the action channel. The middleware puts
these channels in common and introduces negotiation and conflict resolution, so that, for
instance, as a result of user input on a device, the controller on another device can action

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 13

the first device together with a third device. The architecture is very interesting, however
scalability is not brought into discussion.

We have summarized some features that are relevant to our work, as they are manifested
by the systems that we have reviewed above, in Table 1. It easy to observe that different
agent system consider different aspects of Ambient Intelligence and adopt different ap-
proaches to their implementation — for instance regarding centralization of the system. It
is also worth noting that few of the system address only the problem of the middleware,
and many of them are trying to propose a complete architecture, from the sensing level
to the user interface.

In our work, we are trying to focus on only one layer of an Ambient Intelligence environ-
ment, and use agents only for what they are good at: reasoning, autonomy, proactivity.
We assume that the information can be provided by the layers below, and that interfac-
ing with the user can be done in the layer above — we believe that applying a layered
structure (which is done by some of the mentioned architectures [SBS*08, SGK05]) is a
better way to deal with the design of such a complex system as a flexible, generic Ambient
Intelligence environment.

2.2 Context-Awareness

It is hard to talk about Ambient Intelligence without mentioning context-awareness. Many
systems with applications in Ambient Intelligence implement context-awareness as one of
their core features (see Table 1). In previous work in the field of context-awareness there
are usually two points of focus: one is the architecture for capturing context information;
the other is the modeling of context information and how to reason about it.

Ever since the first works on context-awareness for pervasive computing [DAS99], cer-
tain infrastructures for the processing of context information have been proposed [HLO1,
HHS*02, LW05, HI0O6, BDRO07, FAJ04]. There are several layers that are usually proposed,
going from sensors to the application: sensors capture information from the environment,
there is a layer for the preprocessing of that information, the layer for its storage and man-
agement, and the layer of the application that uses the context information [BDRO7]. This
type of infrastructures is useful when the context information comes from the environ-
ment and refers to environmental conditions like location, temperature, light or weather.
However, physical context is only one aspect of context [CK00]. Moreover, these infras-
tructures are usually centralized, using context servers that are queried to obtain relevant
or useful context information [DAS99, LWO05]. In our approach [OSF10], we attempt to
build an agent-based infrastructure that is decentralized, in which each agent has knowl-
edge about the context of its user, and the main aspect of context-awareness is based on
associations between different pieces of context information.

Modeling of context information uses representations that range from tuples to logical,
case-based and ontological representations [PRL09, SLP04]. These are used to determine
the situation that the user is in. Henricksen et al use several types of associations as well
as rule-based reasoning to take context-aware decisions [HI06, BBH"10]. However, these
approaches are not flexible throughout the evolution of the system — the ontologies and
rules are hard to modify on the go and in a dynamical manner. While ontologies make an

14 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

excellent tool of representing concepts, context is many times just a set of associations that
changes incessantly, so it is very hard to dynamically maintain an ontology that describes
the user’s context by means of a concept. In this paper we propose a more simple,
but flexible and easy-to-adapt dynamical representation of context information, based
on concept maps and conceptual graphs. While our representations lacks the expressive
power of ontologies in terms of restrictions, a graph-based representations is very flexible
and extensible, so support for restriction may be added as future work.

In this work we will present two systems that use different approaches regarding context-
awareness: in one, context is modeled by some simple and generic measures of context,
that are attached to the pieces of information — the measures describe the urgency of the
information, its validity and its relatedness to certain domains of interest (see Section 3.4);
in the other, context is modeled implicitly by using a hierarchical structure for agents,
that is mapped against the different types of contexts that are considered by the system
(see Section 4).

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 15

3 Self-Organizing Agents for Ambient Intelligence

3.1 The Problem

We see an Ambient Intelligence environment like a large number of devices that serve the
needs of their respective users. The devices are mostly going to deal with information:
delivering relevant information to interested users, aggregating, filtering and reasoning
about information. The problem that we asked is: given a certain piece of information,
how to deliver that piece of information to the interested users — the users to which that
information is relevant? This is a problem that is addressed to the intelligent services layer
of an Aml environment and can be solved by a middleware, between the lower layers of
the environment and the applications that need the information. We have named this
middleware AmlIciTy:Mi , as a part of the AmlciTy Ambient Intelligence environment
that we are in the process of building.

The design of the MAS that is presented in this section started from the following idea:
at realistic scale, an Aml system will have to deal with a very large number of users and
an even greater number of devices that communicate between each other. The imple-
mentation is based on two ideas: the use of agents and the application of mechanism
of self-organization. In this project we tried to define a structure for individual agents
that will allow them, by means of large numbers and intense interaction, to fulfill the
global desired goal — the context-aware sharing of information — and this by means only
of limited knowledge and reasoning, and local behaviour and communication.

Let us explain the purpose of the system more clearly: a large number of agents is given,
that have a location in space and cover a certain rectangular area. The agents can only
communicate locally, with their neighbours. A user of the system can insert a piece of
data into the system, that contains indications of the domains to which it is of interest,
of its importance, and of its validity. The purpose of the system is to distribute the said
piece of knowledge among the agents in the system, so that other users — in other locations
— that are interested in the data will be able to know it.

The process should work for many pieces of data with different parameters, and this
should all be done using reduced resources in terms of memory and processing.

3.2 Design Rationale

Why agents? Ambient Intelligence environments need to be distributed as much as
possible in order to be able to deal with the loads imposed by the quantity of information
that will be exchanged. Agents are one of the paradigms that can be used for the imple-
mentation of distributed. Moreover, their qualities — such as autonomy and pro-activity
— make them especially appropriate for the implementation of AmI [RAS0S].

Why self-organization? A large portion of the devices in Aml environments will be
smart sensors and actuators, which will have a minimal processing power and storage
capacity. But that doesn’t mean that they must be necessarily controlled by a centralized
entity. In order for Aml to be "intelligent”, there is no need for the individual entities that

16 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

it consists of to be intelligent [CFLZ05]. Moreover, self-organization allows a system to
be robust and fault-tolerant [Hey02], which are features very much needed by Aml, which
will have to be dependable and adaptive to changing conditions. By means of techniques
that are used in self-organizing systems, we have obtained properties at the global level
of the system by using local interaction and knowledge.

Why cognitive agents? Because cognitive does not necessarily mean very complex.
Agents working with small knowledge bases can be much more useful than purely reactive
agents. This project also was an experiment to see what kind of emergent properties can
be obtained in a system formed of cognitive, as opposed to reactive, agents [OF09].

Why local behaviour? First, it will be very difficult to mange all information in an
Aml environment in a centralized way, or even in a hierarchical structure. Second, there
will be no need too. It is very likely that users will only be interested in information that
is related to something close to them — close in location, time or social relations. We
are not supporting locality in terms of only location, but also of time, acquaintances and
computing resources.

Context-awareness? Context-awareness is an essential component of any Aml environ-
ment (also see section 3.4). We see context as vicinity in a domain that considers space,
time, social relationships, computing resources and actions / intentions.

3.3 System Structure

The AmlciTy middleware is being developed keeping in mind the scale of a real Ambient
Intelligence scenario. In such a situation, there is a huge number of users and (possibly
"intelligent”) devices: sensors, actuators and more advanced human-machine interfaces.
These devices communicate permanently and exchange a huge quantity of information,
coming from all the sensor perceptions, the users themselves, and from information ag-
gregation. To complicate the problem even more, most of the devices that are used have
limited storage and processing capacity.

This is why the middleware must be completely distributed. Each agent in the middleware
is assigned to and is executed on a device. There might me more agents that are connected
to the same device, especially if they handle different functions. Agents will communicate
directly only with the agents assigned to devices in a certain vicinity. Communication
may be done by means of a wired network but most communication between personal
devices will be done wireless.

From the perspective of the devices, the middleware is only accessible by means of the
agents that run on the device. The general view of the system from this perspective
is shown in Figure 3. The device’s interface communicates with the software agent(s)
on the device, by means of a uniform data structure, packing the sent data into such a
structure, and unpacking received data from the structure. When the agent receives new
information from the exterior or from the device, it reasons about this information and,
if it considers that adequate or necessary, it sends the information to other agents in its
vicinity.

It is important to point out that AmlIciTy:Mi does not exist as a separate entity, but is

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 17

perception uniform
—_— E——

device | pack / agent
action unpack

Figure 3: The structure of the middleware, as seen from the perspective of the devices.
The ”system”, i.e. the middleware, is actually formed of the agents that compose it.
There is a packing / unpacking step in the interface - agent communication so that the
communication will be uniform over all the middleware. The devices and the agents are
circled together to point out that the agents are executing on the devices, and are using
the devices’ communication hardware. Although not shown in the figure, there may also
be more agents per device

an entity that is formed by the totality of the agents composing it.

In the current implementation of AmlciTy:Mi , we have focused on the realization of the
agents and of their internal workings, as well as the knowledge representation, context
measures and interaction protocol. As a result, the agents are running in a simulated
environment where they are aware of their neighbours and they can receive pieces of data
from the exterior, with the purpose of sharing them with the other agents.

A practical application to the studied system would be, for instance, a network of sensors
in a building. The sensors have low computational capabilities so their behavior must be
simple and use little memory. They sense events in the environment, like temperature or
the presence of people. The system is completely decentralized, but information must be
available for retrieval from any of the sensing devices. Therefore, sensors aggregate their
sensor information into larger chunks of data and ”insert” it into the system, which, by
using only local information and communication between neighbour sensors, distribute the
data and make it uniformly available throughout the building. This is only an example.
The system is generic and was built to fit a greater number of possible applications.

3.4 Context-Awareness

By context we understand the conditions in which an event occurs and that are related
to the event [CK00]. Context-awareness is the feature of a system (here, an Aml system)
that makes the system behave differently in function of these conditions.

Being context-aware means providing to the user information which is compatible with

18 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

the context of the user. More precisely, the context of the information must be compatible
with the context of the user in order for the information to be relevant. In our experiments,
compatibility is actually between the information and the agent’s context.

To provide context-awareness for information sharing, we propose four simple and generic
aspects of context-awareness: first, space is implicitly considered, because of the structure
of the system, that relies on local behaviour and communication; second, temporal context
is implemented as a period of validity for each piece of information; third, each piece of
information is related to certain domains of interest; last, each piece of information carries
a direct indication of its relevance (estimated by the source).

We see context compatibility as prozimity between the two contexts — the context of the
new information and the context of agent — in terms of the aspects enumerated above.
A more detailed description of these aspects of context-awareness, together with their
influence on how information is shared and spread through the system is presented below:

Local behaviour and interaction — leads to inherent location awareness. New infor-
mation will first reach the agents in the area where the information was created (e.g.
where the event took place). In function of the other aspects of context-awareness, the
information will only stay in the area or will spread further. Also, all other measures
equal, agents will give less relevance to information related to a farther location.

Time persistence — shows for how long is the information relevant. When its validity
expires, the agents start discarding the piece of information.

Specialty — shows how the information relates to some domains of interest. In time,
agents form their own notion of specialty in function of the information that they have.
New information is considered more relevant if it is more similar to the agent’s specialty,
and agents share relevant information first, and they share it with agents that are more
likely to consider it relevant. This influences the direction in which information is spread.

Pressure — shows how important it is for the information to spread quickly. Pressure
translates into higher relevance and the agent will treat the information with higher
priority. Also, the higher the pressure, the more neighbours the agent will send the
information to. This way, pressure controls how quickly the information spreads.

Context compatibility, or relevance of new information is calculated in function of the
measures of context associated with the new information and in function of the context
of the agent, comprised only of an indication of specialty. In order to be able to aggregate
and compare the different measures, all are quantified and bounded, and their ranges are
all scaled to the interval [0, 1]: locality has an explicit quantification as the distance to
the source of the event (see the next section), and is represented in the interval [0, 1], with
0 meaning it refers to this agent and asymptotically growing to one for longer distances;
persistence is a value in the interval [0, 1], with 1 meaning the information is valid forever,
and 0 meaning it has expired; specialty is a vector in which each component has a value
in the interval [0, 1] showing the degree of relatedness with a certain domain of interest,
and the whole vector has a maximum norm of 1; pressure is also a value in the interval

0, 1].

When calculating the relevance of new information, distance, persistence and pressure are

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 19

introduced directly in the computation of relevance. Specialty is compared against the
specialty of the agent. Similarity between the two is calculated as follows:

S (S1; — 52;)? S1-82

sina, o = arccos(m)

stmilarity =1 —
4 n domains of interest

where S1 and 52 are the two specialty vectors, and the sum is for all domains of interest.
The formula has been chosen in order to give lower similarity to vectors that are at
greater angle (different specialties) but also to give higher similarity when one vector is
less specialized than the other.

Relevance is calculated as a mean of the 4 numbers — all in the same interval — distance,
persistence, pressure and similarity. This allows for different types of important facts —
a fact can be equally important if it has high pressure, or if it is of great interest to the
agent (similar to its specialty).

3.5 Agent Structure

Agents in AmlIciTy:Mi have been designed so that they are simple, flexible, and so that
an agent with the same structure can run both on a simple processor assigned to a sensor
and on a powerful computer. The agents are cognitive, but hold little knowledge and
form very simple plans. In our experiments, particular attention has been given to agents
that hold very small knowledge bases and that would be suited for very small devices like
Sensors.

In the design of the agents, inspiration was also taken from the human behaviour and
thinking. As the quantity of information that will pass through an agent’s knowledge base
over time is quite large and the agent will be unable to (and it would probably be useless
to) store it all, the agent must be able to sort its knowledge according to its relevance, and
it must be able to "forget” information that is of no more use or of insufficient relevance.

The information in the agent’s knowledge base is stored in Facts, where Facts are tuples
of the form

(Agent, knows, Fact)

Note that the definition is recursive. At this point, the system is generic and does not
study a real-life application. Therefore, facts that would normally represent useful infor-
mation coming from the environment are replaced with Facts containing a DataContent
placeholder, that has an identifier for tracing Facts relating to that information. The
recursive depth of a fact gives its distance to the source of the information, which is used
in calculating relevance.

There are also other pieces of knowledge that an agent has but are not represented in
the knowledge base. This is the knowledge of the agent’s neighbours. Direct neighbours
are stored in the neighbour list. But the agent also knows about the existence of other,
farther, agents, from the facts in its knowledge base. Also refer to Figure 4 (b).

This structure allows the agent to hold information about what it knows but also about

20 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

external requests,
perceptions, etc

‘

inbox Process messages

}

KB Insert new beliefs
Revise existent beliefs

Make new
available goals

Goal list

&
e
oo
i
about
is directly connected to

Ongoing and Make plans for goals 9
aiting plans agent 1 agent 3
knows
Execute current plan about

actions agent 4
(a (b)

Figure 4: (a) The basic execution cycle of an agent. (b) Example of content of an agent’s
(the one in the center) knowledge base. Several relationships are displayed, like knows
about, is connected to, has, knows

i

~—

what other agents know. This is how an agent can calculate the Specialty of neighbour
agents.

In the presented experiments we have used very limited maximum sizes for the knowledge
bases of agents, to show that the agent need very little storage capacity in order to
manifest context-aware behaviour. In applications where different types of devices are
involved, agents may have knowledge bases of different sizes.

3.6 Agent Behaviour

At the beginning of each cycle (see Figure 4 (a)) the agent checks the messages in the
inbox, by integrating facts in the knowledge base, if they are new. The agent also infers
that the sender knows the fact, which contributes to the agent’s knowledge about its
neighbours.

In the next phase the agent forms a list of potential goals. There are two types of goals
that an agent can have: Inform other agents of some information or Free some storage
capacity. Each goal is assigned an importance, and the most important goal will be
chosen as an intention. The importance of Inform goals is taken from the relevance of
the information to be sent. Importance for the Free goal is calculated in function of
how full the agent’s storage capacity is, reaching a value of 1 (highest importance) when
the knowledge base consumes all available capacity. The agent must always have some
capacity free for new facts that come from other agents.

After choosing a goal, the agent makes a plan for it. For Free goals, the agent decides
what facts to discard. For Inform goals, the agent decides what neighbours to inform
of the corresponding fact. The number of neighbours to inform is directly related to the
pressure of the fact. Agents are chosen according to their estimated specialty, calculated
as a mean specialty of the facts that the agent knows the neighbour has. At each cycle

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 21

the agent will execute one action in its current plan.

So, the stages that an agent goes through during a step of the system’s evolution are:

e Receive messages from neighbour agents. There exist only Inform messages.

e Revise beliefs. This is done based on information received from the other agents.
Facts that other agents inform about are integrated in the knowledge base. Du-
plicate or circular facts are found and removed. Context measures of facts are not

modified.

e Check ongoing or waiting plans for completion (was the goal achieved?) and
test whether they have become impossible. In the case of completion the plan is
discarded and the pressure of the corresponding facts is canceled. The interest
towards the facts, on the other hand, remains constant.

e Make plans. First, update the list of available goals: add or update the Free goal
if necessary; update and add Get goals for the facts in the knowledge base. Then,
take the goal with the highest current importance. If there is no plan for it, make
a plan composed of the actions needed to be taken and put it in the list of ongoing
plans.

e Execute plans. Take the plan associated with the most important goal and ex-
ecute its next action (if the plan is not waiting). If there are no more actions to
be performed, move the plan to the list of waiting plans. It will be checked for
completion in the next cycle.

e Fade memory of all facts in the knowledge base. Pressure of all facts is faded.
Facts in which the agent has no interest, whose persistence has reached zero, or that
have low pressure may be discarded (”forgotten”). This step is necessary in order
to avoid overwhelming the agent with useless facts and too old concerns.

e Revise pressure and interest. The pressure on the agent is recalculated according
to the facts in its knowledge base, as a weighted mean of the pressures of the
individual facts, giving more importance to high-pressure facts. The specialty is
updated as well, according to the pieces of data that the agent holds and according
to its recent activity (the resulting specialty is also calculated as a mean).

The behaviour of the agent changes in function of its context measures. On the one hand,
specialty directly affects the relevance that is associated with various facts. Higher rele-
vance associated to facts makes them better candidates for inform messages sent to other
agents, and lower relevance makes facts better candidates for removal (or ”forgetting”).
Then, the agents update their own specialty according to the facts that they have.

Feedback. There is an important aspect of feedback that exists in the AmlciTy:Mi .
First, the way in which agents update specialty: agent’s specialty influences the facts
that they consider relevant and send, sent facts influence other agent’s specialty and
knowledge, and in return they receive facts with a certain specialty. Second, pressure
influences relevance directly, so feedback loops form, caused by information with high
pressure. Feedback leads to an aspect of self-organization by the formation of emergent
specialty groups.

22 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

Figure 5: (a) - (d) The distribution of a certain piece of data over several steps of the sys-
tem’s evolution, in a system already holding 4 other pieces of data. (e) The simultaneous
distributions of 6 pieces of data after 150 steps. (from [OGF10b])

3.7 Results

The project called AmlciTy:Mi started with a multi-agent system for the distribution of
data [OGF09b, OGF10b]. The idea was to have many cognitive, but limited, agents that,
as a system, would retain a number of pieces of data. Even if a certain agent did not have
all the pieces of data at a certain time, nor did it have much information about the area
around it, the system had the emergent property that the data was well distributed and
did not get lost — although agents were able to remove data from their storage.

The multi-agent system was implemented as a Java application, running on a single
machine. At each step in the simulation, each agent executes one cycle — however, each
agent only receives the messages that were sent in the previous step. This implementation
was chosen because the purpose was to study the behaviour of the system, in conditions
that will allow maximum performance and that let us focus on the properties of the system
rather than on implementation issues.

Figure 5 shows some results obtained in this first phase of the project: the evolution of
the distribution of a certain piece of data, as well as the simultaneous distributions of
6 pieces of data. In the figure, each cell represents an agent, and the colour of the cell
is related to the data to which the graph corresponds. In Figure 5, although there are
"holes” in the distribution, i.e. there are agents that do not hold a certain piece of data,
the system changes all the time, so the "holes” move incessantly in the distribution. In
the last result, where there are 6 pieces of data in the system, agents have capacity of 4,
and try to keep a quarter of their capacity free for potential new data, so it is normal
that the pieces of data are divided approximately in half. The results were obtained on
a system using 400 agents. The scenario was fairly simple: insert each piece of data, at a
certain time, into one single agent in the system (which may have been in a corner of the
grid or in tis center).

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 23

(b) — step 35, Facts for D5 — D8

step 42 step 45 step 48 step 60 step 64
(c) — facts for D9

q40 11297 12009

steps 0-48 steps 0-60 steps 0-100
(d) — fact number for D9

Figure 6: (a) Agent interest for domains A, B and C. In the first image interest in
all domains is represented. Next three images represent the interest for one domain of
interest each, respectively. (b) Resulting distributions for facts of interest to domains
A, B, C and A + C, respectively. (c) Evolution of the distribution of a fact with high
pressure, starting from the left side of the grid. (d) The number of facts in the system
referring the high-pressure information; the number represents the maximum value in the

graph. (from [OGF10al)

A subsequent phase in the project’s development moved towards the idea of context-
awareness [OGF10a, OGF09a], as described in Section 3.4, but only considering two
measures of context: pressure and interest (interest later became Specialty). Agents were
able to form interest towards certain domains and then they would be more interested
in information about those particular domains. However, agents were still placed in a
rectangular gird, and their internal algorithm was fairly complicated. See some results in
Figure 6 (a) and (b): first, some facts are inserted into the system (not shown), and the
agents form certain interests. Then, when a new series of facts is inserted, it is easy to see
that they follow the previously formed interests. Pressure of the facts acts not i terms of
direction, but in terms of speed. Observe in Figure 6 (c) that the facts with high pressure
spread in the whole system in just 20 steps. The number of agents having the facts risis
exponentially (Figure 6 (d)).

These results were obtained using the following scenario: first, insert into the system
4 pieces of information, with different Specialties, in the corners of the grid, that will

24 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

form agents’ Specialties. Once agent having clear Specialties, insert another 4 pieces of
information, this time in the center of the grid, and see if they follow the previously
formed Specialties. For instance, in Figure 6, it is easy to observe that the facts regarding
domain A (in green) spread towards the top-left corner of the grid; the facts regarding
domain B (in blue) followed two directions: top-right and bottom-left; facts regarding
domain C' (in red) spread towards the right side of the grid; and facts regarding both
domains A and C spread towards the bottom-right corner (where there was interest for
domain C') — they don’t reach the top-left part because agents in the center are already
"'busy’ with the facts regarding domain B. The last part of the scenario concerns inserting
a fact with no particular Specialty (in gray), but with very high pressure — this spreads
quickly, covering the grid in just 20 steps, and also does not influence the distributions of
the other facts.

But it is the latest version of the project that yielded the most interesting results [OG10].
These results were obtained by the simplification of the structure and functioning of
the agents, and also by the tweaking of the constants in their algorithm in order to
obtain better results. We will present in the following paragraphs a few details on the
implementation, and the results that we have obtained.

In this last version, we have tried to simplify as much as possible the cycle of the agent:
this way, it will be easier to execute the agent on a simpler device. Therefore, an agent
A does the following:

e agent A receives at most m messages (m is decided in function of the pressure upon
the agent — if pressure is high the agent takes at least 2 messages; otherwise, it may
take more, or even all messages). Messages only contain facts of which other agents
want to inform A;

e for each fact F' received (which is of the form (Agent, knows, (Agent, knows,
... (Agent, knows, Fact)))), agent A stores two facts: 1 is the Fact — the actual
information, that the agent now knows. The other is F', containing data about what
the sending agent knows, and, potentially nested inside, about what other agents
know;

e the agent checks its plans for completion;

e the agent fades pressure and persistence of the facts in its knowledge base; it calcu-
lates the pressure upon itself by the average of pressures of the facts that it knows;
also its Specialty is updated, considering new facts that have been received;

e agent A makes a plan for its most important goal. Goals can be Free goals, or
Inform goals (see Section 3.6);

e the agent takes one action from the plan for its most important (pressing) goal, and
executes it.

The results were of the same nature as the ones before (Figure 6), however many im-
provements were obtained. First, the performance of the system increased considerably:
the system executed 200-250 steps in the multi-agent system’s time (in one step, each
agent carries out one cycle) in about 10 seconds on a machine with an Intel Core 2 Duo

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 25

sonERERE G- A Interest Grid - B Interest Grid =G

(a) step 120, Specialty

Diata Facts Grid - D4 Dafdfats Grid- DS Data Facts Grid - DG

(b) step 230, Distribution of new facts

Interest Grid - B Interest Grid - ©

oy

(c) Specialty, agents are in random positions

Diata Facts Grid - D4 Diata Fa-gsg,Gnd -D5 Data Facts Grid - D&
T

",

¥ an
d
1 Uhy

(d) Respective fact distribution

Figure 7: (a), (b) Specialty of agents for all domains and domains A, B and C, and the
distribution of facts, 100 steps later, for facts with Specialties related to domains B, A and
C. (c), (d) For random locations of agents, simultaneous snapshots of agent specialties
and respective facts.

3.33GHz CPU, with 2GB of RAM memory, considering that there are 1000 agents (in
fact 312) in the system.

This performance is based not only on the very short cycle of the agent, but also on a
special data structure, implemented by the authors, called a QuickSet: a set of values that
can be ordered, the set being kept sorted at all times; it allows updating the elements,
but the elements don’t have to be removed and re-added — modified elements move in
the set at their new position, therefore performing only the operations that are strictly
necessary.

Figure 7 presents the results obtained in this last version of the system. The test scenario
that was used was slightly different: first, insert many facts, at random positions, with low
pressure and persistence, and various specialties; then, insert 3 ’test’ facts, with medium
pressure and high persistence, and with specialties regarding each domain; finally, insert
one or two facts with high pressure.

As a further improvement, we have also implemented the possibility for the agents to
have random positions. They communicate only with agents that are very close to them.
The results were good, however, due to the fact that agents now usually have less then 8
neighbours (as it was the case with the grid layout), so spreading the information takes
more time.

26 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

3.8 Future Work

Implementing and simulating the prototype of AmlciTy:Mi was an experience that led to
many lessons learned. First, we have studied how a system of simple, but cognitive agents,
can manifest emergent properties related to the context-aware distribution of information.
Second, we have succeeded in implementing agents that are very simple, but successfully
lead — by means of only local knowledge and actions — to a spreading of data that is
coherent beyond their limited knowledge.

The future brings many challenges: further testing is necessary, also including agent
mobility, and testing of fault tolerance (agents that can go out of the system, or disappear
for certain amounts of time); better measures (other than visual results) must be developed
in order to evaluate the system; distributing the system, so that it would execute on several
machines, is also required to validate it; finally, execution of agents on various devices
that move around will prove that the system is indeed worthy of being implemented at a
larger scale.

Acknowledgment

I would like to thank my colleague Cristian Gratie that has an enormous contribution
to the implementation of this project — especially in monitoring tools — and that has
participated in the taking of many design decisions. Without him, the development of
the project would have been much slower. I would also like to thank Sofia Neata, who
has added some measures for the evaluation of the system.

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 27

4 A Context-Aware Multi-Agent System in CLAIM

This section presents a second approach to the implementation of Ambient Intelligence.
If AmlIciTy:Mi deals with the scalability of future AmI environments, the Ao Dai project
— Agent-Oriented Design for Ambient Intelligence — studies in more detail the connection
between agents and context-awareness, in which context is represented in a more advanced
manner than in AmlciTy:Mi .

The Ao Dai project has been implemented in collaboration with Thi Thuy Nga Nguyen
and Diego Salomone-Bruno, under the supervision of prof. Amal El Fallah Seghrouchni.
The scenario presented below has been demonstrated in a simulated environment, running
on two different machine, during the 5th NII-LIP6 Workshop, held in June 2010 in Paris,
France.

4.1 CLAIM and Sympa

As an agent-oriented programming language, CLAIM [SEFS04] eases the task of im-
plementing multi-agent systems. It works on top of Java, giving direct access to Java
resources if needed. Agents implemented in CLAIM are executed using the Sympa plat-
form, that manages the agents’ life cycle and also their mobility.

The CLAIM language is based on explicit declaration of agent’s characteristics. For
example, the following code shows a part of the definition of agent PDA in the Ao Dai
project:

defineAgentClass PDA(Tw,?h,?x;,7y;){

authority = null;

parent = null;

knowledge = {location(?z;,7y;); type(1);}

goals = null;

messages = null;

capabilities = {

message = PDAatLoc (?name,?Tew, Ynew);

condition = null;
do{send(this,migrateTo(?name))}
effects = null;

}

migrate{
message = migrateTo(?name);
condition = not(Java(PDA.isParent(this,”name)));
do{send(this,removeOldNavi(?name))
.moveTo(this,?’name).send(this,demandNavi(?name))}
effects=null;

}

processes={send(this,starting())}

28 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

Floor

5. search
screen 2 L. screen
7. found TN

6. found
.. 2. find path
A N3, 3- show map

N ! Screen
i
!

2.
*._ 5. move to Floor N
\\ O /' Navigator
6 Q Screen, /
6. move to PDA 8. mbve to PDA

PDA Screen agenda PDA Screen agenda ™. Navigator //

(a) (b)

Figure 8: Sequences of messages exchanged between agents: (a) Floor announces PDA
of its new position, and instructs it to move as its child, then creates a Navigator that
will offer services to PDA; (b) Agenda announces a new meeting, PDA asks a path from
Navigator, which in turn requires a larger screen — which is searched on the floor, and
found, then Screen moves as a child of PDA.

agents=null;

}

Agents are characterized by their parent in the agent hierarchy, their knowledge — repre-
sented as first order predicates, their goals, messages that they can receive, capabilities,
processes that they execute, and agents that are their children. Capabilities are acti-
vated by certain messages that are received, or certain conditions that can occur (that
are verified continuously).

For instance, in the example above, when the agent PDA receives a message about its
new location, it will execute the action "migrate”. In this action, it checks if its actual
location is already the location brought by the message (which is represented by the
variable ?name). If it does, the agent ignores the message, otherwise, it will move to
the new site by calling the function "moveTo()”. If the new site is located in another
computer in the network, the agent PDA and all its children will migrate to this new
computer.

It is important to observe that agents are part of an agent hierarchy. There is one or
more logical trees of agents, each agent being able to have a parent and a certain number
of children. This idea of having an agent hierarchy is central to our approach.

It is also important that CLAIM agents are mobile, featuring strong mobility: when they
move to another machine, their execution continues without losing knowledge, messages
or capabilities. The developer, in this case, need not to worry about the code migration
and registration problems that may arise. The language takes care of it, concentrating
the agents’ information in the Administration System. To address the security issues
concerning mobile code, CLAIM offers some features like the agent’s authority validation,
and, also, the language also allows the developer to decide if an agent must have some
special access or if an agent must have some resource denied. The sum of these features
creates a powerful platform to the development of agent-oriented mobile applications.

From the point of view of this work, there are two structures that agents are part of:
the physical structure, where each agent executes on a certain machine; and the logical
structure, where agents are part of logical hierarchies, that may well exist across multiple
machines.

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 29

Figure 9: The map shown by different screens in Ao Dai. There are three Site agents:
Floor and two Office agents. Each one has a child of type Screen, representing the screens
in the different places. The user starts on the floor (1) then moves to one office (2) and
then to the other (3).

4.2 Scenario

In this project, we have studied several scenarios including the following (also see Figure
8): a user has a meeting in a building that he / she does not previously know. When
arriving at the right floor, the user’s PDA automatically connects to a local wireless access
point. A CLAIM agent executes on the user’s PDA — we will call this agent PDA. Another
agent executes on a local machine and manages the context of the building’s floor — call
it Floor. Floor detects the presence of the user’s PDA, and instructs the PDA agent to
move in the agent structure and become a child of Floor. The movement is only logical:
the agents keep executing on the same machines as before.

When PDA enters the floor, Floor also spawns a new agent — called Navigator — and
instructs it to move as a child of PDA. This time, the movement is not only logical:
Navigator is a mobile agent that actually arrives on the user’s PDA and will execute there
for all the time during which the user is on the floor. The Navigator can provide PDA
(and inherently the user) with a map of the floor, can translate indications of the floor’s
sensors (sent to Navigator by Floor, and through PDA) into positions on the graphical
map, and can calculate paths between the offices on the floor. Navigator is an agent that
offers to the user services that are available and only makes sense in the context of the
floor.

For displaying the map, PDA may detect that its screen is too small too appropriately
display the map, so PDA will proactively initiate the search for a larger screen in the
nearby area. The search can have several criteria: the space in which the search will take
place (the current office, a nearby office, the whole floor), the range in which to search,
and the minimal size of the searched screen. Devices are searched by the capabilities
they offer — in this case the display capability is needed. PDA sends the query to its
parent — Floor — which in turn locates among its children an agent Screen, that manages
a physical screen that fits the requirements, is located near to the user and is available.
Screen answers the query and PDA asks it to move to become its child. Being a child of
PDA also marks the fact that Screen is in use by the user, and PDA gains control over
the displayed information. Agent Screen may either run on the actual intelligent screen,

30 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

Device Device Service

Figure 10: Example of an abstract logical hierarchy for the Ao Dai project: The root Site
offers a Service and also contains another Site that contains a Device. The user is inside
the second site, and its PDA can offer him the capabilities of two Dewvices and a Service
(that may be a mobile agent executing on the PDA.)

or may only manage the screen while being executed on a server. When the user moves
farther from the screen, the PDA will detect that the context is no longer compatible and
will free Screen, which will return to be a child of Floor.

4.3 System Architecture

The architecture of the Ao Dai system revolves around one critical idea: mapping different
contexts to different parts of the logical hierarchy of agents formed by the parent / children
relationships in CLAIM agents.

Location is, notably, the most used context in applications [DA00], because it reflects
an important set of physical contents. In the Ao Dai project, besides location, we also
consider as part of the user’s context, the available computing resources around him and
his preferences.

In the implementation of the scenario presented in Section 4.2, there are three major
types of agents: the Site agent (of subtypes Floor and Office), the Device/Service agent
(e.g. Navigator agent, Agenda, Screen) and the PDA agent, the latter with the specific
role of representing the user during the simulation. Also see Figures 10 and 8.

e The Site agent is used to determine the physical relationship between the agents. It
means that an Office agent is a child of a Floor agent only if it is physically located
on the given floor.

e The Service (or Device) agent has the capability to offer to the other agents some
specific service. It may be in a direct or indirect way, like showing some information
on the screen or advising other agents of the user meeting.

e The third type, PDA agent, as said before, works like a personal device that follows
the user through his tasks. The most important features of this agent are the fact

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 31

that the PDA moves physically with user and has the CLAIM capability of managing
requests for services or devices. It also stores user’s preferences. It is important to
note that the PDA actions will depend mostly of the user’s current context.

In the first version of this project, the context is directly sensed (in a simulated manner)
by the PDA and the Site Agents, but is known that, in real applications, an additional
layer is needed to capture the sensors information and translate then in useful data.

The context-awareness in Ao Dai is done by exploiting the particular hierarchical agent
structure that is offered by the CLAIM language. In CLAIM it is very easy for the de-
veloper to instruct agents to move from one parent to the other, and an agent moves,
automatically, along with its entire sub-hierarchy of agents. This resembles the mobile
ambients of Cardelli [CG00] and is an essential advantage when implementing context-
awareness. That is because agents, while representing devices or locations, can also rep-
resent contexts, allowing the developer to describe, in fact, a hierarchy of contexts.

For example, when the user is inside a room, its PDA agent is a child of the respective
Site agent. The children of PDA — devices or services — are also in the same context.
When the user moves to another room, the PDA agent changes parent and, along with
it, its children move as well, therefore changing context. Some devices may not be able
to move along with the user (e.g. fixed screens, etc.) so they will determine that the new
context is incompatible with their properties, moving away from PDA.

But context is not only about location, and the hierarchical structure that is offered by
CLAIM can be used for easy implementation of other types of context. One of them
is computational context. When the user uses a service, a Service agent is created and
becomes a child of PDA. It is easy for the service to interrogate its parent in order to find
out more about its capabilities. Conversely, it is easy for PDA to check on its children
— Services or, more important, Devices — in order to find the resources and capabilities
that the user is able to use.

One last type of context that is handled in Ao Dai is user preferences. The user is able
to input preferences on the capabilities of devices that it needs to use. These preferences
are then integrated in the queries that are launched by the PDA (see Section 4.2). While
the structure offered by CLAIM is not directly useful for this aspect, the preferences help
find not only the closest device with the required capability, but also the closest device
that fulfills certain user requirements. Preferences can also be used to limit the range of
the search, which is meaningful from the context-aware point of view: a Device that is
closer in the agent hierarchy also shares more context with the user.

4.4 System Behaviour

In a highly distributed Aml environment, a good representation of context and context-
related relations between devices means that most of the communication will happen only
at a local level withing the structure formed by these relations. In Ao Dai, the CLAIM
agent hierarchy facilitates this: agents sharing a parent share a context.

To preserve the hierarchy of agents, agents are allowed to interact only with their parent

32 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

and their children. Take for example the search for devices (see Figure 8). When agent
PDA wants to search for a device with a certain capability and certain criteria, it must
send a request to its parent, for example agent Floor. Once the request received, agent
Floor searches itself to see if it has the requested capability and it satisfies the criteria.
If it does, Floor answers immediately to agent PDA, in the other case, it searches in all
of its children (if any) except the agent who invoked the search (agent PDA). After all
of its children have answered, agent Floor checks if there are one or more children that
have the capability requested and satisfy the criteria. If it has a confirmation answer, it
sends the search result which contains the information about the found device(s) to agent
PDA and the search is finished. If not, agent Floor has to search in its parent (if any).
After the parent has answered, the agent floor sends the search result to agent PDA and
finishes the search. The search process is executed recursively. User preferences can be
used to limit the range of the search to closer contexts.

The advantage of using such a protocol in conjunction with mapping context over the
agent hierarchy is that the search will usually end very quickly, assuming the user will
most times ask for devices that are likely to exist in his context. The search is executed
in the current context first, and then in the parent context and sibling contexts.

4.5 Future Work

The presentation and demonstration of the Ao Dai project at the NII-LIP6 Workshop have
received very good reaction from both French and Japanese researchers. After subsequent
discussions, it is very likely that the development of the Ao Dai project will be continued,
jointly with a team from the NII Laboratory.

There are several future steps in this research. Among these, the integration of better
mechanisms of anticipation, support for more types of contexts and improved context
representation into the project will bring it closer to dealing with realistic requirements.

Acknowledgments

I would like to thank Thi Thuy Nga Nguyen and Diego Salomone, master students with
the LIP6 laboratory, as well as prof. Amal El Fallah Seghrouchni, for implementing
and, respectively, coordinating the development of this project. Excerpts from our paper
accepted at the PRIMA 2010 conference [SONS10] have been included in this report.

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 33

5 Conclusion

The domain of Ambient Intelligence is a vast and still very new one. Problems raised
by designing and implementing an Aml environment are many and complex. It is hard
to even precisely specify the requirements and the necessary functionalities of such an
environment.

During my PhD thesis, I study the possibilities and the potential offered by the use of
software agents and multi-agent system in the domain of AmlI. More precisely, considering
a layered perspective on an Aml environment, the use of software agents in the composi-
tion of the intelligent services layer — that should deal with moving information between
devices in such a way that the user will be assisted non-intrusively and in a manner that
will appear intelligent, and that will be secure and privacy-aware. In all these issues,
context-awareness is a fundamental keyword.

So far, this work has dealt with two issues. On the one hand, how to design an Aml
environment that would be scalable and dependable. The answer may lie in the use of
a multi-agent system based on principles of self-organization, in which agents — that can
easily adapt to the computational power of the device it is running on — have little, and
local knowledge, and execute only actions with a local effect, in order to obtain, at the
level of the system, coherent distributions of information. The results we have obtained
are encouraging, and the measures of context that were devised — although simple and
generic — proved to be effective in controlling the spread of information among agents.

On the other hand, how to use a high-level, agent-oriented language for the design of a
context-aware Aml environment. This time, the application featured fewer agents, but
the implementation was more specific, and the context representation was more advanced:
context-awareness was implicit, by mapping the contexts to logical structures of agents.

6 Future Work

As the central element of Ambient Intelligence seems to be context-awareness, it is clear
that more work needs to be carried out in this direction. Future work will explore more
advanced ways to represent context, while keeping the representation flexible and man-
ageable by agents that execute on both powerful and tiny devices.

The main challenge of future research is to merge the features of the two applications that
were developed. This way, it will be possible to build a system that has the advantages
of both.

Another challenge is a better representation of context. We must try to find a represen-
tation that is generic — that is not confined to a specific application — but that is simple
and flexible enough so that, depending on available resources, an agent can have variable
levels in the detail and the accuracy of context representation.

Also as a part of future research there is the need to go from the level of simulation to the
actual implementation of the presented concepts in agents that execute on real devices.

34 Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

More concrete scenarios than the one presented in Section 1.2 will be developed, to act
as validation scenarios for the AmlciTy project.

Acknowledgments

This work has been funded by the Sectoral Operational Programme Human Resources
Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protec-
tion through the Financial Agreement POSDRU/6/1.5/S5/16. Parts of this work have also
been supported by Laboratoire d'Informatique de Paris 6 (LIP6), UPMC, Paris, France.

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 35

References

[BB02)

[BBH*10]

[BDRO7]

[CFJ*+04]

[CFLZ05]

[CGOO]

[CKO0]

[CMTTOS]

[DA0O]

[DAS99]

[DBS*01]

[FAJO4]

G. Banavar and A. Bernstein. Software infrastructure and design challenges for
ubiquitous computing applications. Communications of the ACM, 45(12):92—
96, 2002.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of con-
text modelling and reasoning techniques. Pervasive and Mobile Computing,
6(2):161-180, 2010.

M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware sys-
tems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263—
277, 2007.

H. Chen, T. Finin, A. Joshi, L. Kagal, F. Perich, and D. Chakraborty. In-
telligent agents meet the semantic web in smart spaces. Internet Computing,
IEEE, 8(6):69-79, 2004.

Giacomo Cabri, Luca Ferrari, Letizia Leonardi, and Franco Zambonelli. The
LAICA project: Supporting ambient intelligence via agents and ad-hoc mid-
dleware. Proceedings of WETICE 2005, 14th IEEE International Workshops
on Enabling Technologies, 13-15 June 2005, Linkoping, Sweden, pages 39-46,
2005.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput. Sci.,
240(1):177-213, 2000.

Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical Report TR2000-381, Dartmouth College, November 2000.

S. Costantini, L. Mostarda, A. Tocchio, and P. Tsintza. DALICA: Agent-
based ambient intelligence for cultural-heritage scenarios. IEEFE Intelligent
Systems, 23(2):34-41, 2008.

A K. Dey and G.D. Abowd. Towards a better understanding of context and
context-awareness. CHI 2000 workshop on the what, who, where, when, and
how of context-awareness, pages 304-307, 2000.

A K. Dey, G.D. Abowd, and D. Salber. A context-based infrastructure for
smart environments. Proceedings of the 1st International Workshop on Man-
aging Interactions in Smart Environments (MANSE’99), pages 114-128, 1999.

K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.C. Burgelman.
Scenarios for ambient intelligence in 2010. Technical report, Office for Official
Publications of the European Communities, February 2001.

Ling Feng, Peter M. G. Apers, and Willem Jonker. Towards context-aware
data management for ambient intelligence. In Fernando Galindo, Makoto
Takizawa, and Roland Traunmiiller, editors, Proceedings of DEXA 2004,
15th International Conference on Database and Expert Systems Applications,

36

Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

[Fer99|

[HCC*04]

[Hel05]

[Hey02]

[HHS102]

[H106]

[HK04]

[HLO1]

[KBM*02]

[LWO5]

[OF09]

(0G10]

Zaragoza, Spain, August 30 - September 3, volume 3180 of Lecture Notes in
Computer Science, pages 422-431. Springer, 2004.

J. Ferber. Multi-agent systems: an introduction to distributed artificial intel-
ligence. Addison-Wesley, 1999.

H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish, and H. Du-
man. Creating an ambient-intelligence environment using embedded agents.
IEEFE Intelligent Systems, pages 12—20, 2004.

Michael Hellenschmidt. Distributed implementation of a self-organizing appli-
ance middleware. In Nigel Davies, Thomas Kirste, and Heidrun Schumann, ed-
itors, Mobile Computing and Ambient Intelligence, volume 05181 of Dagstuhl
Seminar Proceedings, pages 201-206. ACM, IBFI, Schloss Dagstuhl, Germany,
2005.

F. Heylighen. The science of self-organization and adaptivity. The Encyclo-
pedia of Life Support Systems, pages 1-26, 2002.

A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster. The anatomy
of a context-aware application. Wireless Networks, 8(2):187-197, 2002.

K. Henricksen and J. Indulska. Developing context-aware pervasive comput-
ing applications: Models and approach. Pervasive and Mobile Computing,
2(1):37-64, 2006.

M. Hellenschmidt and T. Kirste. A generic topology for ambient intelligence.
Lecture notes in computer science, pages 112-123, 2004.

J.I. Hong and J.A. Landay. An infrastructure approach to context-aware
computing. Human-Computer Interaction, 16(2):287-303, 2001.

T. Kindberg, J. Barton, J. Morgan, G. Becker, D. Caswell, P. Debaty,
G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, and B. Serra. Peo-
ple, places, things: Web presence for the real world. Mobile Networks and
Applications, 7(5):365-376, 2002.

Till Christopher Lech and Leendert W. M. Wienhofen. AmbieAgents: a scal-
able infrastructure for mobile and context-aware information services. Pro-
ceedings of the 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Nether-
lands, pages 625-631, 2005.

Andrei Olaru and Adina Magda Florea. Emergence in cognitive multi-agent
systems. Proceedings of CSCS17, the 17th International Conference on Control
Systems and Computer Science, MASTS Workshop, May 26-29, Bucuresti,
Romania, 2:515-522, 2009. ISSN 2066-4451.

Andrei Olaru and Cristian Gratie. Agent-based information sharing for am-
bient intelligence. In Mohammad Essaaidi, Michele Malgeri, and Costin Bad-
ica, editors, Proceedings of IDC’2010, the 4th International Symposium on
Intelligent Distributed Computing, MASTS 2010, the The 2nd International

Andrei Olaru ~ Towards a MAS-Based Model for Ambient Intelligence 37

[OGF09a]

[OGFO9b)]

[OGF10a]

[OGF10b]

[Olal0]

[OSF10]

[PRLOY]

[RASOS]

[RVDAOS5]

[Sat01]

[Sat04]

Workshop on Multi-Agent Systems Technology and Semantics, volume 315 of
Studies in Computational Intelligence, pages 285—294. Springer, 2010.

Andrei Olaru, Cristian Gratie, and Adina Magda Florea. Context-aware emer-
gent behaviour in a MAS for information exchange. In Proceedings of AC-
Sys09, 6th Workshop on Agents for Complex Systems, in conjunction with
SYNASC 2009, September 26-29, Timisoara, Romania, pages 17-22, 2009.
ISSN.

Andrei Olaru, Cristian Gratie, and Adina Magda Florea. Emergent proper-
ties for data distribution in a cognitive MAS. In George Angelos Papadopou-
los and Costin Badica, editors, Proceedings of IDC 2009, 3rd International
Symposium on Intelligent Distributed Computing, October 13-14, Ayia Napa,
Cyprus, volume 237 of Studies in Computational Intelligence, pages 151-159.
Springer, 2009. ISBN 978-3-642-03213-4.

Andrei Olaru, Cristian Gratie, and Adina Magda Florea. Context-aware emer-
gent behaviour in a MAS for information exchange. Scalable Computing:
Practice and FExperience - Scientific International Journal for Parallel and
Distributed Computing, 11(1):33-42, March 2010. ISSN 1895-1767.

Andrei Olaru, Cristian Gratie, and Adina Magda Florea. Emergent properties
for data distribution in a cognitive MAS. Computer Science and Information
Systems, 7(3):643-660, June 2010. ISSN 1820-0214.

Andrei Olaru. A context-aware multi-agent system for Aml environments.
Technical report, University Politehnica of Bucharest, University Pierre et
Marie Curie Paris, 2010. February.

Andrei Olaru, Amal El Fallah Seghrouchni, and Adina Magda Florea. Am-
bient intelligence: From scenario analysis towards a bottom-up design. In
Mohammad Essaaidi, Michele Malgeri, and Costin Badica, editors, Proceed-
ings of IDC’2010, the 4th International Symposium on Intelligent Distributed
Computing, volume 315 of Studies in Computational Intelligence, pages 165—
170. Springer, 2010.

M. Perttunen, J. Riekki, and O. Lassila. Context representation and reasoning
in pervasive computing: a review. International Journal of Multimedia and

Ubiquitous Engineering, 4(4):1-28, October 2009.

C. Ramos, J.C. Augusto, and D. Shapiro. Ambient intelligence - the next step
for artificial intelligence. IEEE Intelligent Systems, 23(2):15-18, 2008.

G. Riva, F. Vatalaro, F. Davide, and M. Alcaniz, editors. Ambient Intelligence.
IOS Press Amsterdam, 2005.

Mahadev Satyanarayanan. Pervasive computing: Vision and challenges. IEEFE
Personal communications, 8(4):10-17, 2001.

I. Satoh. Mobile agents for ambient intelligence. Proceedings of MMAS, pages
187201, 2004.

38

Towards a MAS-Based Model for Ambient Intelligence ~ Andrei Olaru

[SBS*08]

[SEFS04]

[Seg08]

[SGKO5]

[SLP04]

[SMO6]

[SONS10]

[VRV05]

[Wei93]

[Wei95]

A.E.F. Seghrouchni, K. Breitman, N. Sabouret, M. Endler, Y. Charif, and J.P.
Briot. Ambient intelligence applications: Introducing the campus framework.

13th IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS’2008), pages 165-174, 2008.

A. Suna and A. El Fallah Seghrouchni. Programming mobile intelligent agents:
An operational semantics. Web Intelligence and Agent Systems, 5(1):47-67,
2004.

Amal El Fallah Seghrouchni. Intelligence ambiante, les defis scientifiques.
presentation, Colloque Intelligence Ambiante, Forum Atena, december 2008.

N.M. Sadeh, F.L. Gandon, and O.B. Kwon. Ambient intelligence: The My-
Campus experience. Technical Report CMU-ISRI-05-123, School of Computer
Science, Carnagie Mellon University, July 2005.

T. Strang and C. Linnhoff-Popien. A context modeling survey. Workshop on
Advanced Context Modelling, Reasoning and Management as part of UbiComp,
pages 1-8, 2004.

N.I. Spanoudakis and P. Moraitis. Agent based architecture in an ambient
intelligence context. Proceedings of the 4th European Workshop on Multi-
Agent Systems (EUMAS’06), Lisbon, Portugal, pages 1-12, 2006.

Amal El Fallah Seghrouchni, Andrei Olaru, Thi Thuy Nga Nguyen, and Diego
Salomone. Ao dai: Agent oriented design for ambient intelligence. In Proceed-
ings of PRIMA 2010, the 13th International Conference on Principles and
Practice of Multi-Agent Systems, 2010. accepted for publication.

M. Vallée, F. Ramparany, and L. Vercouter. A multi-agent system for dynamic
service composition in ambient intelligence environments. Advances in Per-
vasive Computing, Adjunct Proceedings of the Third International Conference
on Pervasive Computing (Pervasive 2005), pages 1-8, 2005.

M. Weiser. Some computer science issues in ubiquitous computing. Commu-
nications - ACM, pages 74-87, 1993.

M. Weiser. The computer for the 21st century. Scientific American, 272(3):78-
89, 1995.

